
ibm.com/redbooks

VSAM Demystified stified

Dave Lovelace
Rama Ayyar
Alvaro Sala

Valeria Sokal

Learn the latest VSAM functions and
manage VSAM data

Understand, evaluate, and use
VSAM properly

Problem determination
and recommendations

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

VSAM Demystified

September 2003

International Technical Support Organization

SG24-6105-01

© Copyright International Business Machines Corporation 2001, 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (September 2003)

This edition applies to Version 1, Release 4 of z/OS (product number 5694-A01) and z/OS V1
DFSMS Transactional VSAM Services (feature number 6330).

Note: Before using this information and the product it supports, read the information in
“Notices” on page xix.

Contents

Figures . xiii

Tables . xvii

Notices . xix
Trademarks . xx

Preface . xxi
The team that wrote this redbook. xxi
Become a published author . xxii
Comments welcome. xxiii

Chapter 1. VSAM basics . 1
1.1 A brief description of VSAM . 2
1.2 VSAM functions by release level . 2
1.3 What is VSAM? . 4

1.3.1 VSAM access types . 4
1.4 Major VSAM parts . 4

1.4.1 Catalog management . 4
1.4.2 Record management. 5

1.5 VSAM terminology and concepts . 5
1.5.1 Logical record . 5
1.5.2 Key field . 6
1.5.3 Ways to identify logical records. 6
1.5.4 Physical record . 7
1.5.5 Control interval . 8
1.5.6 Control area . 10
1.5.7 Spanned records. 10
1.5.8 Component . 10
1.5.9 Cluster. 13
1.5.10 Sphere. 14
1.5.11 Alternate indexes . 14
1.5.12 Splits . 15
1.5.13 VSAM buffering . 16

1.6 VSAM data set organizations . 16
1.6.1 Key-sequenced data set . 16
1.6.2 Entry sequenced data set (ESDS) . 19
1.6.3 Relative record data set . 21
1.6.4 Variable relative record data set . 22
© Copyright IBM Corp. 2001, 2003. All rights reserved. iii

1.6.5 Linear data set (LDS) . 23
1.7 Comparing VSAM data set organizations . 24
1.8 Choosing a VSAM data set type . 26
1.9 Extended format data set . 28
1.10 Extended addressability . 29
1.11 Data striping . 30
1.12 Processing a VSAM cluster. 31

1.12.1 Allocating a VSAM cluster. 31
1.12.2 Accessing VSAM cluster . 33
1.12.3 Unallocation . 38

1.13 VSAM exploiters . 38
1.13.1 DB2 . 39
1.13.2 Hierarchical file system (HFS). 39
1.13.3 zSeries File System (zFS). 39
1.13.4 CICS . 40
1.13.5 DFSMShsm. 40
1.13.6 DFSMSrmm . 40
1.13.7 Java Record I/O (JRIO). 40

Chapter 2. Performance . 43
2.1 Service level agreement . 44
2.2 Transaction performance . 44
2.3 Performance management . 46

2.3.1 I/O performance . 46
2.4 VSAM performance management . 47
2.5 VSAM rule-of-thumb mode . 48

2.5.1 Invalid rules-of-thumb . 48
2.6 Parameters affecting performance . 49

2.6.1 Allocation units . 49
2.6.2 Guaranteed Space . 50
2.6.3 Optimizing control area (CA) size . 52
2.6.4 Partial release . 53
2.6.5 Allocation constraint relief . 54
2.6.6 Control interval size. 54
2.6.7 FREESPACE definition for KSDS and ESDS 56
2.6.8 Index options. 58
2.6.9 Key Range and Ordered . 58
2.6.10 Share options . 58
2.6.11 Initial load option . 59
2.6.12 Region size . 61
2.6.13 Buffering options . 63
2.6.14 Buffering techniques . 68
2.6.15 Data compression . 94
iv VSAM Demystified

2.6.16 VSAM Data striping. 103
2.7 VSAM performance by scenarios . 115

2.7.1 Performance scenario using RMF reports 115
2.7.2 Reducing the number of I/Os . 119
2.7.3 I/O wait time (IOSQ) for VSAM data sets . 125
2.7.4 I/O service time (connect) for VSAM data sets 129
2.7.5 Decreasing VSAM CPU time . 132

2.8 VSAM and ESS controllers . 134
2.8.1 ESS model 800 enhancements. 134
2.8.2 Lab experiments . 135

2.9 Performance monitors . 136
2.9.1 Resource measurement facility. 136
2.9.2 Tivoli Decision Support (TDS). 137
2.9.3 Generalized Trace Facility (GTF) . 137

Chapter 3. VSAM problem determination and recovery 139
3.1 VSAM problem determination hints and tips . 140

3.1.1 How to check your VSAM data set . 140
3.1.2 z/OS system messages . 141
3.1.3 Catalog Search Interface IGGCSIVS program 141
3.1.4 System LOGREC messages. 142
3.1.5 GTF CCW traces. 142
3.1.6 DITTO/ESA output . 142
3.1.7 What can you get from the SMF records? 142

3.2 Some common VSAM problems . 142
3.2.1 Lack of virtual storage . 143
3.2.2 Initial loading problems . 144
3.2.3 Mismatch between catalog and data set. 145
3.2.4 Hardware errors . 147
3.2.5 Bad data or bad channel program. 149
3.2.6 Structural damage. 150
3.2.7 Improper sharing . 153
3.2.8 Mismatch between catalog and VTOC . 155
3.2.9 VSAM does not produce expected output. 155
3.2.10 VSAM RLS problems . 156
3.2.11 VSAM and DFSMStvs considerations. 157
3.2.12 OEM problems . 157
3.2.13 Enqueue issues. 157
3.2.14 Migration issues . 159
3.2.15 Performance considerations . 160
3.2.16 Deadlocks . 160
3.2.17 Beware of some VSAM restrictions. 161

3.3 What documentation to collect . 162
 Contents v

3.3.1 Catalog performance problems. 162
3.3.2 VSAM RLS problems . 162
3.3.3 IDCAMS problems . 163
3.3.4 Broken VSAM data set . 163
3.3.5 Broken catalog . 164
3.3.6 How to obtain VSAM record management trace?. 164

3.4 How to recover a damaged VSAM data set . 165
3.4.1 EXAMINE command . 165
3.4.2 DIAGNOSE command . 166
3.4.3 VERIFY command . 166
3.4.4 Broken Index scenario . 169
3.4.5 Abend task scenario . 171
3.4.6 Recovering damaged BCS entries . 172
3.4.7 Recovering damaged VVDS entries . 172

3.5 Prevention is better than cure . 173
3.5.1 Back up your VSAM data sets . 173
3.5.2 Keep your system at current maintenance levels 178
3.5.3 Use Resource Recovery Management Services (RRMS) 178

3.6 Where to look for more information . 178
3.6.1 IBM manuals and sources of relevant information 178
3.6.2 Information APARs from IBMLINK on VSAM problems 179
3.6.3 Information APARs on specific problems . 179
3.6.4 VSAM information on the Internet . 180

3.7 IDC3009I message . 181
3.8 IDCAMS LISTCAT output fields . 187

3.8.1 High used RBA value (HURBA) for KSDS 192
3.8.2 High allocated RBA value (HARBA) . 193
3.8.3 FREESPC . 193
3.8.4 High key RBA/CI . 193
3.8.5 High-level index RBA value. 194
3.8.6 Sequence set first RBA value . 194
3.8.7 Number of index levels . 194
3.8.8 Time stamps . 194

3.9 SMF record types related to VSAM data sets . 194
3.9.1 SMF record type 60. 194
3.9.2 SMF record type 61. 195
3.9.3 SMF record type 62. 195
3.9.4 SMF record type 63. 195
3.9.5 SMF record type 64. 196
3.9.6 SMF record type 65. 197
3.9.7 SMF record type 66. 197
3.9.8 SMF record type 67. 198
3.9.9 SMF record type 68. 198
vi VSAM Demystified

3.9.10 SMF record type 69. 199
3.9.11 SMF record type 42. 199

3.10 RRMS and VSAM . 199

Chapter 4. Managing your VSAM data sets . 203
4.1 Reorganization considerations . 204

4.1.1 CI/CA splits . 204
4.1.2 The loss of useful space in Data CA . 204
4.1.3 CI/CA splits causing free space increase . 208

4.2 New Index CI size calculation algorithm . 208
4.2.1 Analyze existing data sets. 210

4.3 Sharing VSAM data sets . 212
4.3.1 Write and read integrity . 215
4.3.2 VSAM sharing mechanisms . 216
4.3.3 Sharing data in a single VSAM control block structure 218
4.3.4 Sharing data with many VSAM control block structures 223
4.3.5 General share options: Considerations. 226
4.3.6 Protecting VSAM data set through DISP parameter 227

4.4 Extended addressability (EA) . 228
4.5 Catalog Search Interface. 231

4.5.1 CSI setup . 231
4.6 Major sources of VSAM processing options . 233

4.6.1 ACB control block . 235
4.6.2 DD statement keywords . 237
4.6.3 Catalog BCS and VVDS entries . 237
4.6.4 SMS constructs . 237

4.7 Media Manager, Open, Close, EOV in VSAM. 238
4.7.1 OPEN macro . 239
4.7.2 CLOSE macro . 239
4.7.3 End-of-Volume (EOV) . 240

4.8 VSAM and 64 bits . 240
4.9 Special considerations for COBOL users and SMB 241

4.9.1 COBOL users take note . 241

Chapter 5. VSAM Record Level Sharing . 243
5.1 Introducing VSAM RLS . 244

5.1.1 What is VSAM RLS? . 244
5.1.2 Why RLS? . 244
5.1.3 How does RLS work? . 244
5.1.4 RLS in a single system (monoplex). 245
5.1.5 CICS and VSAM RLS . 246
5.1.6 RLS restrictions. 249

5.2 RLS terminology . 250
 Contents vii

5.3 Planning for RLS . 253
5.3.1 Hardware requirements. 253

5.4 Implementing VSAM RLS . 253
5.4.1 Define Sharing Control Data Set (SHCDS). 253
5.4.2 Define CF cache structures. 256
5.4.3 Define CF lock structures . 258
5.4.4 SMS definitions . 260
5.4.5 Modifying the PARMLIB IGDSMSxx Member 262
5.4.6 Security definitions . 263
5.4.7 Using a VSAM sphere in RLS mode . 264
5.4.8 RLS Recoverable spheres . 265

5.5 RLS problem determination and recovery. 266
5.5.1 Problems with SHCDS . 266
5.5.2 Problems with SMSVSAM. 266
5.5.3 Problems with locks . 266
5.5.4 SHCDS FALLBACK procedure . 267
5.5.5 RLS rules . 267
5.5.6 MVS commands for RLS. 268

5.6 RLS enhancements. 278
5.6.1 RLS/KSDS extended addressability . 278
5.6.2 VSAM RLS CF structure duplexing and rebuild 278
5.6.3 RLS CF caching enhancements . 280

5.7 RLS performance . 282
5.7.1 Factors affecting RLS data sharing performance 282
5.7.2 CF access time . 295
5.7.3 RLS performance gains . 297
5.7.4 CICSPlex RLS performance comparison . 299
5.7.5 Batch RLS performance experiments and comparison. 300
5.7.6 RMF and VSAM RLS . 306
5.7.7 MVS commands about RLS performance. 320
5.7.8 SMF records covering VSAM RLS . 321

Chapter 6. DFSMStvs . 323
6.1 Introducing DFSMStvs . 324
6.2 Why DFSMStvs? . 324

6.2.1 How to extend CICS availability . 324
6.2.2 Reducing the batch window . 325

6.3 Some definitions . 326
6.3.1 Backward recovery . 326
6.3.2 Forward recovery . 326
6.3.3 Atomic updates . 326
6.3.4 Unit of work and unit of recovery. 327
6.3.5 Two-phase commit . 328
viii VSAM Demystified

6.3.6 In-flight and in-doubt . 329
6.3.7 Repeatable read . 329
6.3.8 Recoverable data sets . 330

6.4 CICS support for recoverable VSAM. 330
6.5 DFSMStvs overview . 331

6.5.1 The RLS connection . 332
6.5.2 DFSMStvs locking. 332
6.5.3 DFSMStvs logging . 332
6.5.4 Recovery coordination . 335

6.6 Our experiences with implementation . 337
6.6.1 Define list structures in the CFRM policy . 338
6.6.2 Define the log structures and log streams in LOGR policy 340
6.6.3 Define SMS constructs for DFSMStvs . 345

6.7 DFSMStvs problem determination tips . 345
6.7.1 How to take a dump of the problem? . 346
6.7.2 Classes of errors . 346
6.7.3 Determining the Failing Module . 346
6.7.4 Apparent batch job hangs . 347
6.7.5 Other hangs . 347
6.7.6 Quiescing a data set . 347
6.7.7 Close/delete/rename of data set with inflight UR 348
6.7.8 New and changed system level commands for DFSMStvs 348
6.7.9 SET SMS and SETSMS commands . 354
6.7.10 VARY SMS command. 354
6.7.11 SYS1.PARMLIB changes . 355
6.7.12 Changes to Job Control Language (JCL) 358
6.7.13 Changes to IDCAMS. 358
6.7.14 Messages and codes . 361
6.7.15 Macros that have been changed to support DFSMStvs 361

Appendix A. Sample code . 363
JRIO API examples . 364

Locate a record by key in keyed access record file 364
Position to a record in a random access record file 364
Read a record from a keyed access record file. 364
Read a record from a random access record file 365
Update a record in a keyed access record file . 365

Accessing the VSAM Shared Information (VSI) . 366
Sample programs extract from SMF record type 64 367

SMF64 sample code . 367
SMFLSR sample program. 380

REXX code to list compression ratio . 384
SMFRLS Sample program . 387
 Contents ix

GTF procedure example . 393

Appendix B. Miscellaneous performance items. 395
Our test environment . 396
Hardware configuration . 396
Software configuration . 396
General lab description . 396

What do we measure? . 398
RLS experiments. 399
DASD cache concepts . 399
Cache Modes . 402
Using cache modes in a non-SMS data set . 408
Using cache in an SMS data set . 409

Share options analogy . 412
Symptoms (messages) from a broken data set . 414
IDCAMS EXAMINE messages. 420

Appendix C. Catalog performance. 421
Performance. 422
Enhanced Catalog Sharing . 422
GRS configuration . 422
Diagnosing prolonged catalog ENQ times . 423

LPAR considerations. 425
GRS environment . 426
Catalog contention . 428

Appendix D. Information APARs . 441
II12927 - Documentation for VSAM problems . 442
II13326 - Common problems with SHCDS. 444
BDC000010564 . 451
BDC000007033 . 459
II12603 . 465
II12243 . 467
BDC000022923 . 468
RTA000141603 . 475

Glossary . 477

Related publications . 481
IBM Redbooks . 481
Other publications . 481
Online resources . 482
How to get IBM Redbooks . 482
Help from IBM . 483
x VSAM Demystified

Index . 485
 Contents xi

xii VSAM Demystified

Figures

1-1 3390/3380 Track Format . 7
1-2 General format of a control interval . 9
1-3 General format of a sequence set . 12
1-4 General format of an index set. 13
1-5 Components of a KSDS structure . 17
1-6 Entry sequenced data set (ESDS) . 20
1-7 General format of a relative record data set . 21
1-8 Linear data set (LDS). 23
1-9 DEFINE command required parameters . 32
1-10 ISPF under TSO . 34
1-11 AMS commands. 35
1-12 DITTO selection panel . 36
1-13 DITTO edit function . 37
1-14 VSAM edit panel . 38
2-1 Response time components . 45
2-2 Data Class panel . 51
2-3 VSAM message indicating too small a region size 62
2-4 Address space layout. 62
2-5 NSR buffering . 70
2-6 VSAM shared resources (LSR/GSR). 78
2-7 CMS dictionary selection . 98
2-8 ISMF Data Class display . 100
2-9 Striped VSAM data set. 105
2-10 Layering in VSAM data set striping . 106
2-11 Sample JCL to create a striped data set . 107
2-12 Sample content of KEYEDEXG data class . 108
2-13 Sample content of STRIPE storage class . 109
2-14 Sample IDCAMS control statements and output for four stripes 110
2-15 Example of KEYEDEXT data class . 111
2-16 Example of content of STRIPE storage class 112
2-17 Second example with five stripes. 113
2-18 RMF SYSSUM report. 116
2-19 RMF Enclave report . 116
2-20 Enclave Classification Data report . 117
2-21 Monitor III Device Delay report . 118
2-22 Monitor III DEVN report . 118
2-23 Monitor III DSNV report . 119
2-24 Hiperbatch example . 123
© Copyright IBM Corp. 2001, 2003. All rights reserved. xiii

2-25 Volume Cache report . 127
3-1 JCL, program, message and catalog entry . 169
3-2 IEC161I message . 170
3-3 IDC message in the console . 170
3-4 Examine messages . 171
3-5 Exporting KSDS . 174
3-6 IMPORT of KSDS cluster. 174
4-1 Indexes of KSDS . 205
4-2 HARBA, HURBA, and free space . 206
4-3 Lost space in data CA due to Index CI size too small 207
4-4 Message due to index CI size too small . 209
4-5 Sample output of the CISIZE tool . 211
4-6 Job to download the CISIZE tool . 212
4-7 Sharing VSAM data sets in the Parallel Sysplex 214
4-8 DATA CLASS DEFINE ISMF panel . 229
5-1 RLS in Sysplex. 245
5-2 RLS in Monoplex . 246
5-3 CICS before VSAM RLS . 248
5-4 CICS after VSAM RLS . 249
5-5 An example of defining a CF lock structure . 258
5-6 Displaying MAXSYSTEM. 259
5-7 CF cache set in Storage Class . 261
5-8 Cache Set assignment. 261
5-9 SMSVSAM errors due to SHCDS access failure 264
5-10 MVS messages for a JOB using RLS . 265
5-11 Display the lock structure. 269
5-12 Display the lock structure (continued) . 270
5-13 Sample output of D SMS,CFLS . 271
5-14 Sample of CFCACHE display . 272
5-15 Sample output of D SMS,SHCDS . 273
5-16 Output of D SMS,VSAM,ALL . 274
5-17 Cross invalidation and locks . 288
5-18 Example of two locks synonyms . 290
5-19 RLSLRU report . 308
5-20 RLSSDS. 309
5-21 CF Usage Summary report . 312
5-22 CF Structure Activity report (IGWLOCK00) . 315
5-23 CF Structure Activity report (RLS_CACHE). 317
5-24 Subchannel Activity report . 318
5-25 CF to CF report . 319
5-26 XCF Activity report . 320
5-27 D SMS, CFLS command output. 321
5-28 Output from SMF64 . 322
xiv VSAM Demystified

6-1 An atomic update example . 327
6-2 Unit of recovery examples . 328
6-3 Sharing VSAM data through a CICS file owning region. 331
6-4 Merged forward recovery log . 333
6-5 Undo and redo logging. 335
6-6 RRS as the sync point manager . 336
6-7 Commit processing participants. 337
6-8 Define list structures in the CFRM policy for TVS 339
6-9 Define the log structures and log streams for TVS 341
6-10 Define the log structures and log streams for TVS (cont) 342
6-11 Define the log structures and log streams for TVS (cont) 343
6-12 Sample JCL to define Log Streams . 344
6-13 DFSMStvs Sample RACF Definitions . 345
6-14 Output of D SMS, TRANSVSAM,ALL . 350
6-15 Output of the D SMS,SHUNTED(ALL) command 351
6-16 Output of D SMS,URID(ALL) cDFSMStvsommandDFSMStvs 352
6-17 Output of D SMS,LOG(IGWTV063.IGWLOG.SYSLOG command . . . 353
6-18 Output of the D SMS, DSNAME(dsn) commandDFSMStvs 353
6-19 Modified Output from the D SMS,OPTIONS command 354
6-20 Sample IFAPRDxx parmlib member to enable DFSMStvs 355
6-21 Sample SYS1.PARMLIB(IGDSMSxx) member 356
B-1 DASD Activity Report . 400
B-2 Types of writes. 406
B-3 Cache Subsystem Status report . 408
B-4 Cache activity report . 408
B-5 D SMS,CACHE output . 411
B-6 Sharing VSAM data sets . 413
C-1 RMF Monitor panel . 429
C-2 RMF Monitor III Primary Menu. 430
C-3 RMF III Job Selection Menu. 431
C-4 ENQ / DEQ Main Menu Panel . 433
C-5 ENQ / DEQ Monitor: Major Name List Option 434
C-6 ENQ / DEQ Monitor: locating a major name . 434
C-7 ENQ / DEQ Monitor: Minor Name List . 435
C-8 ENQ / DEQ Monitor: Jobname List . 435
C-9 F CATALOG,REPORT, PERFORMANCE output 436
C-10 F CATALOG Command in SDSF batch. 437
 Figures xv

xvi VSAM Demystified

Tables

1-1 VSAM functions by release level . 2
1-2 Comparison of ESDS, KSDS, RRDS, VRRDS, and linear data sets . . . 25
2-1 this table compares the RECOVERY and SPEED options 60
2-2 Region JCL parameter. 63
2-3 Parameters affecting buffer allocation . 65
2-4 NSR: Read sequential varying the number of buffers. 71
2-5 NSR - Initial Load mode varying the number of buffers 73
2-6 NSR buffering with direct access; STRNO=1 . 76
2-7 Direct access: benefits of using SMB: Updates and insertions 86
2-8 Some effects of ACB’s MACRF and storage class BIAS parameters . . 86
2-9 Initial load mode comparing SMB with no-SMB buffering 87
2-10 SMB: AIX support with Data Set Name Sharing (MACRF=DSN) 88
2-11 SMB: AIX support with DDname Sharing (MACRF=DDN) 89
2-12 SMB: AIX support for DO, no VSAM control block structures 91
2-13 SMB: AIX support for non DO . 91
2-14 Comparing compression . 101
2-15 Random processing: extended format versus non-extended format . . 131
2-16 NSR: Read sequential varying the number of buffers 133
2-17 Direct access: benefits of using SMB: Reads and insertions. 133
2-18 Direct access: benefits of using SMB: Reads 134
2-19 Comparison initial load with ESS . 135
2-20 Comparison Direct access with ESS . 136
3-1 IDC3009I message . 181
4-1 One VSAM Control Block Structure . 219
4-2 Relationship between share options and VSAM functions 227
4-3 VSAM Data Set Parameters and Processing Options 233
5-1 Batch RLS results . 302
© Copyright IBM Corp. 2001, 2003. All rights reserved. xvii

xviii VSAM Demystified

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2001, 2003. All rights reserved. xix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS®
CICSPlex®
DB2®
DFSMS/MVS®
DFSMSdfp™
DFSMSdss™
DFSMShsm™
DFSMSrmm™
DFSORT™
^™
Enterprise Storage Server®
ECKD™

ESCON®
FICON™
Hiperbatch™
Hiperspace™
IBM®
ibm.com®
IMS™
Language Environment®
MQSeries®
MVS™
OS/390®
Parallel Sysplex®
PR/SM™

Redbooks™
Redbooks (logo) ™
RACF®
RMF™
S/390®
System/390®
Tivoli®
VTAM®
z/Architecture™
z/OS®
zSeries®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xx VSAM Demystified

Preface

Virtual Storage Access Method (VSAM) is one of the access methods used to
process data. Many of us have used VSAM and work with VSAM data sets daily,
but exactly how it works and why we use it instead of another access method is a
mystery.

This book helps to demystify VSAM and gives you the information necessary to
understand, evaluate, and use VSAM properly. It clarifies VSAM functions for
application programmers who work with VSAM. The practical, straightforward
approach should dispel much of the complexity associated with VSAM. Wherever
possible an example is used to reinforce a description of a VSAM function.

This IBM® Redbook is intended as a supplement to existing product manuals. It
is intended to be used as an initial point of reference for VSAM functions.

This book also builds upon the subject of Record Level Sharing and the new
z/OS® feature called DFSMStvs.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

Dave Lovelace is a Project Leader at the International Technical Support
Organization, San Jose Center. Before joining the ITSO this year, Dave worked in
the IBM Storage Systems Group as Program Director of Business Development
and Strategic Alliances. With more than 30 years in the IT industry, Dave has
held positions as an IBM Systems Engineer, an MVS™ Systems Programmer, a
Marketing Support Representative in OS/390® marketing, Software Packaging
(CBIPO) and several years working in client/server environments with the US
Military Academy at West Point.

Rama Ayyar is a Senior IT Specialist with the IBM Support Center in Sydney,
Australia. Rama has over 20 years of experience with the MVS operating system
and has been in the Computer industry for over 30 years. His areas of expertise
include TCP/IP, RACF®, DFSMS, configuration management, dump analysis and
disaster recovery. Rama holds a master’s degree in Computer Science from the
Indian Institute of Technology, Kanpur.
© Copyright IBM Corp. 2001, 2003. All rights reserved. xxi

Alvaro Sala is an IBM retiree. He worked in IBM for more than 30 years, always
in large systems. Alvaro co-authored many Redbooks and spent many years
teaching, from S/360 to S/390®. He has a Chemistry Engineer degree from the
University of Sao Paulo, Brazil.

Valeria Sokal is a Business Partner from Brazil. She has 12 years experience as
an OS/390 System Programmer. She co-authored these Redbooks: OS/390
Workload Manager Exploitation and Implementation and ABC’s for OS/390
System Programmers.

Thanks to the following people for their invaluable contributions to this project:

Mary Lovelace
ITSO, San Jose

Savur Rao
Terri Menendez
Helen Witter
Ruth Ferziger
James Becker
Storage Systems Group, San Jose

Charlie Burger
Advanced Technical Systems Center, San Jose

Bob Haimowitz
International Technical Support Organization, Raleigh

Paul Rogers
International Technical Support Organization, Poughkeepsie

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
xxii VSAM Demystified

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099
 Preface xxiii

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xxiv VSAM Demystified

Chapter 1. VSAM basics

This chapter reviews the concepts and terminology associated with VSAM,
explains how a VSAM data set is different from other data set types, discusses
the various types of VSAM data sets, and what makes them unique, and
describes how VSAM data is stored and accessed.

1

© Copyright IBM Corp. 2001, 2003. All rights reserved. 1

1.1 A brief description of VSAM
In the early 1970s, VSAM (Virtual Sequential Access Method) was introduced by
IBM as a collection of three data set organizations — sequential, indexed, and
direct-access, together with the access methods and utilities to be used on the
large scale IBM operating systems.

The word virtual means only that VSAM was introduced at approximately the
same time as the initial IBM virtual storage operating systems OS/VS1 and
OS/VS2. Since then VSAM has been continually improved and enhanced.

1.2 VSAM functions by release level
Some recent improvements to VSAM are extended format and extended
addressability which allows a data set to go beyond the 4 GB limitation, system
managed buffering (SMB) for improved performance, data compression, data
striping, record level sharing (RLS), and most recently, transactional VSAM.
Table 1-1 shows the recent VSAM enhancements by DFSMS release level.

Table 1-1 VSAM functions by release level

Note: DFSMS/MVS® V1R5 was the last independent release. With z/OS
V1R3, DFSMS became an integral component of z/OS. This book is written at
the z/OS V1R4 DFSMS level.

Function Available since Section described in

Data compression for VSAM KSDS DFSMS/MVS V1 R2 “Data compression” on
page 94

Extended addressability for VSAM
KSDS

DFSMS/MVS V1.R3 “Extended addressability
(EA)” on page 228

VSAM RLS DFSMS/MVS V1.R3 Chapter 5, “VSAM Record
Level Sharing” on page 243

RLS support of extended addressabiliy
of VSAM KSDS

DFSMS/MVS V1 R4 Chapter 5, “VSAM Record
Level Sharing” on page 243

SMB for VSAM KSDS DFSMS/MVS V1 R4 “System managed buffering
(SMB)” on page 82

Data striping for VSAM LDS through an
SPE

DFSMS/MVS V1 R5 “VSAM Data striping” on
page 103
2 VSAM Demystified

Extended addressability for all VSAM
data sets

DFSMS/MVS V1 R5 “Extended addressability
(EA)” on page 228

Data striping and multi-layering for all
VSAM data set

DFSMS/MVS V2 R10 “VSAM Data striping” on
page 103

Ignore DEFINE parameters IMBED,
REPLICATE

z/OS V1R3 DFSMS “Index options” on page 58

Ignore DEFINE parameters
KEYRANGE, ORDERED

z/OS V1R3 DFSMS “Key Range and Ordered” on
page 58

SMB retry capability for DO access bias z/OS V1R3 DFSMS “System managed buffering
(SMB)” on page 82

SMB support for AIX® z/OS V1R3 DFSMS “SMB support for AIX” on
page 87

RLS cache CI size bigger than 4KB z/OS V1R3 DFSMS “RLS CF caching
enhancements” on page 280

VSAM data striping support for data
sets with REUSE attribute

z/OS V1R3 DFSMS “VSAM data striping topics”
on page 103

RLS caching all or some of the data in a
Coupling Facility cache structure

z/OS V1R3 DFSMS “RLS CF caching
enhancements” on page 280

Maximum Volume Count, vols added
dynamically to a data set without
manual intervention and taking down
the application

DFSMS z/OS V1R3 “Implementing VSAM data
striping” on page 106

DFSMS Data Set Separation, to
allocate data sets in distinct physical
DASD controllers

DFSMS z/OS V1R3 “I/O wait time (IOSQ) for
VSAM data sets” on
page 125

Real addresses greater than 2 GB
available for all VSAM data sets

z/OS V1R4 DFSMS “VSAM and 64 bits” on
page 240

Media Manager the unique VSAM I/O
driver, exception for Improved Control
Interval Processing (ICIP)

DFSMS z/OS V1R4 v “What is VSAM?” on page 4

RLS system-managed duplexing
rebuild process

z/OS V1R4 DFSMS “System-managed duplexing
rebuild” on page 279

RLS Coupling Facility duplexing z/OS V1R4 DFSMS “System-managed duplexing
rebuild” on page 279

Function Available since Section described in
 Chapter 1. VSAM basics 3

1.3 What is VSAM?
VSAM is one of several access methods in z/OS. It only applies to data stored in
DASD devices. An access method is re-entrant code contained in DFSMSdfp™,
a component of the DFSMS z/OS product. This access method makes it easier
for an application to execute an I/O operation (moving data between an I/O
device and memory).

1.3.1 VSAM access types
There are three types of access in VSAM:

� Random: This is also referred to as direct access. The logical record needs to
be located by the use of a search argument coming from the application.
There is no search argument connection between two consecutive logical
record accesses.

� Sequential: The entire file is processed (for Read or Write), one logical record
after the other. The application does not need to provide any search
argument. The access method can implement a Read look ahead technique
to load logical records in the buffers not yet required by the application
program.

� Skip sequential: A combination of the two previous types of access. The
application randomly provides one search argument and from the located
logical record on, all records are processed sequentially. An example is
sequentially processing all the customers of a bank branch office in a file that
has all the customers of the bank.

1.4 Major VSAM parts
There are two major parts to VSAM, catalog management and record
management.

1.4.1 Catalog management
VSAM maintains extensive information about data sets and direct access storage
space in an integrated catalog facility (ICF) catalog. The catalog’s collection of

Dynamic Cache Reassignment z/OS V1R3 DFSMS “RLS CF caching
enhancements” on page 280

Function Available since Section described in
4 VSAM Demystified

information about a data set defines that data set’s characteristics. All VSAM files
must be defined in an ICF catalog.

In this book, we will not go into detail on Catalog Management. For more
information, refer to the IBM Redbooks Enhanced Catalog Sharing and
Management, SG24-5594, and Integrated Catalog Facility Backup and
Recovery, SG24-5644.

1.4.2 Record management
The record management part of VSAM contains the access method code. In this
book, when we say VSAM we mean VSAM record management, unless the
opposite is stated. VSAM is used to organize records into four types of data sets:
key-sequenced, entry-sequenced, linear, or relative record. The primary
difference between the types of VSAM data sets is the way their records are
stored and accessed.

1.5 VSAM terminology and concepts
Before we discuss VSAM in detail, we need to review some VSAM concepts
implemented by VSAM constructs. These concepts will be used throughout the
book. We are going to start with the smallest VSAM entity, the logical record, to
the largest VSAM entity, the sphere. After that we cover splits, buffering, control
blocks and other constructs.

1.5.1 Logical record
A logical record is a unit of information used to store data in a VSAM data set. It
is made up of a set of bytes containing a logical description of an item processed
by an application program. This item can be a customer with all his or her
information, or an employee with all associated data (name, serial number,
department).

The logical record is designed by the application programmer from the business
model. The logical record is divided in fields, such as: the name of the item, its
key, the address, and the account information. The application through a GET
request that a specific logical record be moved from the I/O device to memory in
order to be processed. Through a PUT the specific logical record is moved from
memory to an I/O device.

A logical record can be of a fixed size or a variable size depending on the
business requirements. VSAM supports both depending on the specific
organization. An example of a variable logical record could be the account
 Chapter 1. VSAM basics 5

information about a bank customer where all debit and credit transactions are
individually described at the end of the register.

1.5.2 Key field
An important field in the logical record is the key. Its contents can be used to
retrieve the specific logical record. It identifies the item associated with the
logical record. Keys can be the customer number or the parts number.

To differentiate between keys used in VSAM objects, the key used in a base
cluster is called a primary key or base key. The key used in an alternate index
is called an alternate key.

In VSAM key sequenced organization, a record must have a unique,
imbedded fixed-length primary key located in the same position within each
logical record. Primary keys can be a minimum of one byte and a maximum of
255 bytes.

There can be multiple key fields in the same logical record, called alternate or
secondary keys. Unlike the primary keys, which must be unique, identical
alternate may occur in more than one logical record. This allows the search
with a given alternate key to read all base cluster records containing this
alternate key.

1.5.3 Ways to identify logical records
In VSAM there are three ways to identify a logical record:

� Key field

� Relative byte address (RBA)

The RBA of a logical record is the offset of its first byte from the beginning of
the file.

Then, the first logical record in a VSAM file has an RBA of zero; the second
logical record has an RBA equal to the length of the first record, and so on.
VSAM returns to the application the RBA of the stored logical record. The
RBA of a logical record in VSAM includes the free space and control
information stored before this logical record.

RBAs might change when records are added, deleted, or changed in size.
With compressed files, the RBAs for compressed records are not predictable.
Therefore, access by RBA is not suggested for normal use.

There are two important RBA values, kept in the Catalog:

– High used RBA (HURBA) is the RBA of the first available byte for inclusion
at end of the VSAM file.

– High allocated RBA (HARBA) is the RBA of the last byte in the VSAM file
6 VSAM Demystified

� Relative Record Number (RRN)

It is the relative number of a logical record in a VSAM specific organization
(RRDS). If a logical record has an RRN of 3 means that it is the fourth logical
record in the file.

The terms logical record and record are used interchangeably in this book

1.5.4 Physical record
A physical record is device dependent, its size is calculated at the time the data
set is defined. All physical records have the same length. A physical record is
also called a physical block or simply a block.

To understand what a physical record on DASD is, we need to review the
3390/3380 count key data (CKD) track format. Every track starts with an index
marker, a gap, a home address (describing the cylinder and track number) and a
gap. After that, we have the physical records of the track. Refer to Figure 1-1.

Figure 1-1 3390/3380 Track Format

A physical record is formed by a count, a gap, an optional key, a gap and the
data. The key field is only present in non-indexed VTOC and partitioned data sets
(PDS) directories. The count part indicates the number of the physical record in
the track and its data length, which could be variable. The data is usually a set of

R 0

I
M

G
A
P

Home
Address

CCHH
G
A
P

Count

CCHH
R = 0
DL = 64

G
A
P

DATA
G
A
P

Count

CCHH
R = 1
DL = 4KB

G
A
P

DATA

Count

CCHH
R = 2
DL = 4KB

3390/3380
Track Format

R 1

4KB648 8
 Chapter 1. VSAM basics 7

logical records (packed together) transferred from or to memory by just one Read
or Write CCW. The access method uses the BLKSIZE parameter to determine
the length of the physical record. A large block size results in fewer gaps in the
track (track capacity is better used) but larger buffer in memory to keep the data.

Today actual 3390/3380 devices are becoming rare. The new controllers logically
mimic fix block architecture (FBA) disks. You may ask the question “Do I care
about the BLKSIZE to optimize space, if the 3390/3380 track does not really
exist?” The answer is yes. The controller simulates the 3390/3380 track. It knows
for an specific BLKSIZE how many physical records fit on the 3390/3380 track.
So remember the rule-of-thumb (ROT) of a half track BLKSIZE (for sequential
processing) to better utilize the 3390/3380 logical track capacity.

There are two techniques for an access method create physical records:

� First format it with zeroes and later fulfill the data portion with real data. This
technique is used for random data creation or to create software end of files
marks. These EOFs are data parts full of zeroes.

� Format and fulfill with real data at same time. This technique is used for
sequential data creation.

VSAM may have control information along with logical records in the data portion
of the physical record, as we see in the control interval VSAM concept.

1.5.5 Control interval
Control interval (CI) is a VSAM unique concept. A CI is formed by physical
records, usually just one. It is the fundamental building block of every VSAM file.
A CI is a contiguous area of direct access storage that VSAM uses to store data
records and control information that describes the records. A CI is the unit of
information that VSAM transfers between the storage device and the processor
during one I/O operation. Whenever a record is retrieved from direct access
storage, the entire CI containing the record is read into a VSAM I/O buffer in
virtual storage. The desired record is transferred from the VSAM buffer to a
user-defined buffer or work area.

Based on the CI size, VSAM calculates the best size of the physical block in
order to better use the 3390/3380 logical track. The CI size can be from 512 byes
to 32 KB.

The size of the physical record (block) is determined by VSAM based on the CI
size, if the data set is in extended format or not (refer to 1.9, “Extended format
data set” on page 28) and on the best use of space in the 3390/3380 track. For
example in a 3390 without EF, with a CI Size of 22528 bytes, the block size is
5632 bytes; with a CI Size of 24576, the block size is 24576 bytes.
8 VSAM Demystified

For random access, it is recommended to use small data CIs, to avoid bringing
uneeded logical records into memory. For sequential access, it is recommended
that you define large CIs to decrease the number of I/O operations and the
number of Read/Write CCWs.

A CI consists of:

� Logical records stored from beginning to end

� Free space, for data records to be inserted into or lengthened

� Control information, which is made up of two types of fields; one control
interval definition field (CIDF) per CI, and several record definition fields
(RDF) describing the logical records.

– CIDF is a 4-byte field.

– It contains information about the amount and location of free space.

– RDF is a 3-byte field.

– It describes the length of records. For fixed length records there are two
RDFs, one with the length and other with how many with the same length.

For more information on the structure of the control information fields, refer to
DFSMS Using Data Sets, SC26-7410.

Figure 1-2 shows the general format of a CI. The CI components and properties
may vary depending on the data set organization. For example, an LDS does not
contain CIDFs and RDFs in its CI. All of the bytes in the LDS CI are data bytes.
Refer to 1.6, “VSAM data set organizations” on page 16, for more details.

Figure 1-2 General format of a control interval

The size of CIs can vary from one file to another, but all the CIs within the data
component of a particular data set must be of the same length. Refer to 1.5.8,
“Component” on page 10 for details on the data component.

Control Interval Format

LRn

Control information fields

LR = Logical record
RDF = Record definition field
CIDF = Control interval definition field

LR1 LR2 LRn
R
D
Fn

R
D
F2

R
D
F2

C
I
D
F

FREE SPACE
 Chapter 1. VSAM basics 9

You can request the CI size using the AMS DEFINE command, you can let
VSAM determine the CI size, or you can specify an SMS data class, thereby
using the CISIZE defined by your storage administrator.

1.5.6 Control area
Control area (CA) is also a VSAM unique concept. A CA is formed by two or
more CIs put together into fixed-length contiguous areas of direct access
storage. A VSAM data set is composed of one or more CAs. In most cases, a CA
is the size of a 3390/3380 cylinder. The minimum size of a CA is one track. The
CA size is implicitly defined when you specify the size of a data set at data set
definition.

CAs are needed to implement the concept of splits. The size of a VSAM file is
always a multiple of its CA. VSAM files are extended in units of CAs. A spanned
record cannot be larger than a CA.

1.5.7 Spanned records
Spanned records are logical records that are larger than the CI size. To have
spanned records, the file must be defined with the SPANNED attribute at the time
it is created. Spanned records are allowed to extend across or span control
interval boundaries. The RDFs describe whether the record is spanned or not.

A spanned record must always begin on a control interval boundary and fills one
or more control intervals within a single control area. A spanned record cannot
share the CI with any other records. In other words, the free space at the end of
the last segment is not filled with the next record. This free space can only be
used to extend the spanned record.

Spanned records are needed when the application requires very long logical
records. A spanned record may be the data component of an AIX cluster. If
spanned records are used for KSDS, the primary key must be within the first
control interval. Refer to“Alternate indexes” on page 14.

1.5.8 Component
A component is an individual part of a VSAM data set. Each component has a
name, an entry in the catalog and an entry in the VTOC. The KSDS and VRRDS
organizations have data and index components. ESDS, RRDS and LDS
organizations only have data components. A component can be multi-extent and
multi-volume, however VSAM does not allow JCL concatenation between two
VSAM components. You receive the IEC161I message with RC 68.
10 VSAM Demystified

There are two types of components, the data component and the index
component.

Data component
The data component is the part of a VSAM data set, alternate index, or catalog
that contains the data records.

Index component
Using the index, VSAM is able to randomly retrieve a record from the data
component when a request is made for a record with a certain key. The key
determines the record’s position in the data set. VSAM divides the index CI into
sections in order to speed up the search of a key.

A VSAM index can consist of more than one level. Each level contains pointers to
the next lower level.

The index component is a collection of logical records containing data keys and
the address (RBA) of the data logical records containing these keys. These data
keys are taken from a fixed defined field in each data logical record. The keys in
the index logical records are compressed (rear and front). The RBA pointers are
compacted.

Using the index, VSAM is now able to retrieve a logical record from the data
component when a request is made with a certain key. A VSAM index can
consist of more than one level (balanced tree). Each level contains pointers to
the next lower level. Because there are random and sequential types of access
VSAM divides the index into two parts: sequence set and index set.

Sequence set
The sequence set is used for sequential access.

The sequence set is the lowest level of index CIs and directly points (through an
RBA) to the data CI in the CA. There is one index entry per CI data and
consequently one index CI for each data CA.

Every logical record contains pointers and high key information for each data CI.
It also contains horizontal pointers from one sequence set CI to the next higher
keyed sequence set CI (see Figure 1-3). These horizontal pointers are needed
because the possibility of splits, which make the physical sequence different from
the logical collating sequence.
 Chapter 1. VSAM basics 11

Figure 1-3 General format of a sequence set

Index set
The index set is used for random access. The index set is the remainder of the
index component. If there is more than one sequence set CI, VSAM
automatically builds another index CI in other level. Each CI in the index set
contains pointers and high key information for CIs in the next lower level of the
index. See Figure 1-4.

Sequence Set

Forward horizontal pointer at same level
Vertical pointers to data control intervals

one pointer for each control interval in control area
determines minimum CI size for index

Control Interval Control Interval

Control Interval

Control Interval Control Interval Control Interval Control Interval

Sequence Set
Index Set
12 VSAM Demystified

Figure 1-4 General format of an index set

The highest level of the index always contains a single index CI.

1.5.9 Cluster
A cluster is a set of related components (maximum two). For a KSDS, a cluster is
the set of a data component and an index component. The concept of cluster
simplifies VSAM processing, providing a way to treat index and data components
as a single entity, with its own catalogued name. You can also give each
component a name. This allows you to process the data portion separately from
the index portion.

RRDS, ESDS, and LDS formats are considered to be clusters without index
components. To be consistent, they are given cluster names that are normally
used when processing the data set.

Now comes the crucial VSAM question: “What in VSAM corresponds to an MVS
data set?” The best answer is it depends. If you are referring to the cluster name
(in a DD statement for example), then the cluster corresponds to the data set. If
you are referring to a component, then it corresponds to the data set.

Index Set

Forward horizontal pointer at same level
Vertical pointers to next lower level index
records
Just one CI in the top

Control Interval Control IntervalControl Interval Control Interval

Sequence Set

Index Set

Control Interval Control Interval

Control Interval
 Chapter 1. VSAM basics 13

1.5.10 Sphere
A sphere is a base VSAM cluster and its associated clusters. These associated
clusters are the alternate indexes (AIXs) of the base cluster. An AIX is a KSDS
cluster containing index entries in the index component organized by the
alternate keys of its associated base data records. In the AIX data component
there is a set of primary keys associated with the referred secondary key. Then,
the concept of an sphere provides another way of locating records (by using
other keys) in the data component of a cluster.

An AIX can only be defined over a KSDS or ESDS clusters.

1.5.11 Alternate indexes
Alternate indexes (AIXs) allows logical records of a KSDS or of an ESDS (in this
context called a base cluster) to be accessed sequentially and directly by more
than one key field. AIXs eliminate the need to store the same data in different
sequences in multiple data sets for the purposes of various applications. Each
alternate index is a KSDS cluster consisting of an index component and a data
component.

Any field in the base cluster record can be used as an alternate key. It may also
overlap the primary key (in a KSDS), or with any other alternate key. The same
base cluster may have several AIXs varying the alternate key. The alternate key
must follow all the key requirements as described in “Logical record” on page 5,
with the exception of uniqueness. There may be more than one primary key
value per the same alternate key value. As an example the primary key is an
employee number and the alternate key is the department name, obviously the
same department name may have several employee numbers.

The records in the data component contain the alternate key value and all the
primary keys corresponding to the alternate key value (pointers to data in the
base cluster). The primary keys in the logical record are in ascending sequence
within an alternate index value. If you have a large number of primary keys per
alternate key, consider defining the AIX as spanned and compressed.

The AMS program allows you to define, and then to create AIXs when the
BLDINDEX command is specified. An AIX is defined only after its associated
base cluster has been defined, and it can be built only after its base has been
loaded with at least one record.

The BLDINDEX command causes a sequential scan of the specified base
cluster, during which alternate key values and primary keys (for a KSDS) or
record RBAs (for an ESDS) are extracted and put together to form alternate
index records. These records are sorted by ascending alternate keys. The
alternate index records are then constructed and written.
14 VSAM Demystified

Alternate index paths
Before accessing a KSDS or ESDS through an alternate index, a path must be
defined. A path is the mean by which a base cluster is accessed through its
alternate indices. A path is defined and named using the AMS DEFINE PATH
command. At least one path must be defined for each of the alternate indices
through which the base cluster is to be accessed. The path name refers to the
base cluster and alternate index pair. When a program opens a path for
processing, both the base cluster and the alternate index are opened. A base
cluster plus all its AIXs is called a sphere.

1.5.12 Splits
CI and CA splits occur as a result of data record insertions (or increasing the
length of an already existing record) in KSDS and VRRDS organizations. If a
record is to be inserted (in key sequence) and there is not enough free space in
the CI, the CI is split. Approximately half of the records in the CI are transferred to
a free CI provided in the CA, and the record to be inserted is placed in the
original CI.

If there are no free CIs in the CA and a record is to be inserted, a CA split occurs.
Half of the CIs are sent to the first available CA at end of the data component.
This movement creates free CIs in the original CA, then the record to be inserted
causes a CI split.

You should keep in mind that splits are not bad. Splits are how VSAM deals with
a lack of space, and this generates free space that will help prevent additional
splits.

As a result of the split, the physical sequence of records and CIs is no longer the
same as the logical sequence. A new index entry is inserted in the sequence set
for the new CI, and the existing index entry is updated.

Splits (mainly CA splits) consume resources when they occur. However, the fact
that the data is spread in the 3390/3380 volume is no longer a performance
issue. Refer to 2.5, “VSAM rule-of-thumb mode” on page 48.

The number of CI and CA splits is maintained in the catalog.

One example about splits is a real life situation where a customer had a KSDS
loaded with just one record with key 0. First, a batch job added a few records with
a very high numeric key. After the job randomly started adding lots of records
with keys less than the ones inputted by batch. Thousands of splits took place
affecting performance. The available solution was to run the job after the online
and the number of splits went back to normal.
 Chapter 1. VSAM basics 15

1.5.13 VSAM buffering
Buffering is one of the key aspects as the I/O performance is concerned. A
VSAM buffer is a virtual storage area where the CI is transferred during an I/O
operation. In VSAM there are two types of buffers: buffers for data CIs and
buffers for index CIs. A buffer pool is a set of buffers with the same size. A
resource pool is a buffer pool with some control blocks describing the pool and
the clusters with CIs in the resource pool. Refer to “Buffering options” on
page 63, for details on VSAM buffering.

1.6 VSAM data set organizations
VSAM arranges records by index key, relative record number, or relative byte
address. It is used for direct or sequential processing of fixed-length and variable
length records on DASD. VSAM data is cataloged for easy retrieval. VSAM
supports five data set organizations:

� Key-sequenced data set (KSDS)

� Entry-sequenced data set (ESDS)

� Relative record data set (RRDS), of which there are two types:

• Fixed-length relative record data set (RRDS)
• Variable-length relative record data set (VRRDS)

� Linear data set (LDS)

� HFS files

1.6.1 Key-sequenced data set
In a KSDS organization, records are initially loaded in the data component in
ascending collating sequence by key. The key contains a unique value that
determines that record's collating position in the data set.

In VSAM KSDS, if a search argument of a logical record is its key field, then:

� In all logical records, the key length must be the same. The length of the key
must be from one byte to 255 bytes.

� In all logical records the key offset (in relation to the logical record beginning)
must be the same.

� The value of the key field cannot be duplicated among the logical records, it
must be unique.

� After it is specified, the value of the key cannot be altered, however the entire
record can be deleted.
16 VSAM Demystified

� In a spanned record, this field must be located totally in the first control
interval.

Logical records in a KSDS organization can be fixed or variable length records.

When a new record is added to the data component, it is inserted logically in its
collating sequence by key. Refer to Figure 1-5 for the structure of a KSDS.

Figure 1-5 Components of a KSDS structure

For VSAM organizations where the key field in a logical record is a search
argument (as with the KSDS organization), a “balanced tree” index based in
these key values needs to be created. Refer to the Figure 4-1 on page 205. The
index has logical records (called index records) which allows a fast random
search of a data logical record with a matching key value. In the index
component. There is one logical record (with the highest key) for each CI of data,
and a CI for each CA of data.

KSDS types of access
There are three methods by which to access a KSDS. These are sequential,
direct, and skip-sequential.

� Sequential access is used to load a KSDS, and to retrieve, update, add and
delete records in an existing data set.

KSDS Structure

Data Component

Index Component

Control Interval Control Interval Control Interval Control Interval

Control Interval Control Interval

Sequence Set
Index Set

Control Interval

Control Interval
Control Interval

C
O
N
T
R
O
L

A
R
E
A

Control Interval
Control Interval

Cluster
 Chapter 1. VSAM basics 17

VSAM uses the index component to access data records in ascending or
descending sequence by key. When retrieving records, you do not need to
specify key values because VSAM automatically obtains the next logical
record in key sequence. The sequence set (a low portion of the index) is used
to find the next logical CI, through horizontal pointers.

Sequential access allows you to avoid searching the index more than once.
Sequential is faster than direct for accessing multiple data records in
ascending key order. Problem is that many times the application logic does
not need to process all of them.

� Direct access is used to retrieve, update, add and delete records in an
existing data set.

The application program needs to supply a key value for each record to be
processed. You can supply the full key or a generic key. The generic key is the
high order portion of a full key. For example, you might want to retrieve all
records whose keys begin with XY (where XY is the generic key), regardless
of the full key value.

VSAM searches the index from the highest level index set CI to the sequence
set for a record to be accessed. Vertical pointers in the sequence set CI are
used to access the data CA containing the record. The number of index CIs
accessed is numerically identical to the number of layers.

Direct access saves you a lot of I/O overhead by not retrieving the entire data
set sequentially to process a small percentage of the total number of records.

� Skip-sequential access is used to retrieve, update, add and delete records in
an existing data set.

VSAM retrieves selected records, but in ascending sequence of key values.
Skip sequential access avoids:

– Retrieving the entire data set sequentially in order to process a relatively
small percentage of the total number of records in key collating sequence

– Retrieving the desired records directly, which causes the index to be
searched from top to bottom level for each record

For each request the sequence set is used to find the next logical CI and to check
if it contains the requested record. If the first skip-sequential search is the first
access after opening the data set, a direct search is initiated by VSAM to find the
first record. From then on the index sequence set level is used to find the
subsequent records. If other operations were performed before (for example,
read sequential), either the last position of that operation is used as a starting
point to search the sequence set records, or a re-positioning is necessary. If
spanned records are used for KSDS, the primary key must be within the first
control interval.
18 VSAM Demystified

You specify the KSDS organization using the IDCAMS DEFINE command with
the INDEXED parameter.

1.6.2 Entry sequenced data set (ESDS)
An ESDS is comparable to a sequential non-VSAM data set in the sense that
records are sequenced by the order of their entry in the data set, rather than by
key field in the logical record, which could be fixed or variable length records.

All new records are placed at the end of the data set. There is no split concept.
Existing records can never be deleted. As far as VSAM is concerned, the record
is not deleted. It is the responsibility of the application program to identify that
record as invalid. If the application wants to delete a record, it must flag that
record as inactive.

Records can be updated, but without length change. To change the length of a
record, you must either store it at the end of the data set as a new record, or
override an existing record of the same length that you have flagged as inactive.

ESDS types of access
A record can be accessed sequentially or directly by its RBA. The specific RBA is
converted to CCHHR terms, in order to prepare the locate record CCW for the
I/O operation:

� Sequential access

VSAM automatically retrieves records in stored sequence. Sequential access
can be started from the beginning or somewhere in the middle of a data set. If
processing is to begin in the middle of a data set, RBA positioning is
necessary before sequential access can be performed.

� Direct (or random) access

When a record is loaded or added, VSAM notes its RBA. To retrieve records
directly, you must supply the RBA for the record as a search argument.
Although an ESDS does not contain an index component, you can build an
alternate index to keep track of these RBAs. Refer to “Alternate indexes” on
page 14.

Skip sequential access is not allowed for an ESDS. Refer to 1.6.1,
“Key-sequenced data set” on page 16, for more information on skip sequential
access.

Figure 1-6 shows the format of an ESDS.
 Chapter 1. VSAM basics 19

Figure 1-6 Entry sequenced data set (ESDS)

Empty spaces in the CI are referred to as unused space because they can never
be used. This is a result of CI internal fragmentation.

You specify ESDS organization using the IDCAMS DEFINE command and
specifying the NONINDEXED parameter.

AIX can also be applied to ESDS organization. Instead of radomly accessing an
ESDS by RBA, you can ask for an AIX, where a key field in the logical record is
used as a random search argument. In this case, the AIX (remember, it is a
KSDS cluster) data component automatically relates the key with the RBA in the
base cluster. The BLDINDEX command causes a sequential scan of the
specified base cluster, during which key values and record RBAs are extracted
and put together to form alternate index records. Before accessing an ESDS
through an alternate index, a path must be defined.

An example of ESDS with an AIX could be a file used as a time stamp log,
describing all the bank transactions in a checking account application.

RECORD
1

R
D
F

C
I
D
F

CI 1

RBA 0

R
D
F

RECORD
2

RECORD
3

RECORD
4 UNUSED SPACE

C
I
D
F

CI 4

RBA 12288

UNUSED SPACE

RECORD
9

R
D
F

C
I
D
F

CI 3

RBA 8192

R
D
F

RECORD
10 UNUSED SPACE

RECORD
5

R
D
F

C
I
D
F

CI 2

RBA 4096

R
D
F

RECORD
6

RECORD
7

RECORD
8

UNUSED
SPACE

R
D
F

R
D
F

Entry Sequenced Data Set
20 VSAM Demystified

1.6.3 Relative record data set
An relative record data set consists of a number of pre-formatted fixed-length
slots. Each slot has a unique relative record number (RRN), and the slots are
sequenced by ascending relative record number. These slots are grouped in CIs.

Each fixed length logical record occupies a slot, and is stored and retrieved by
the relative record number of that slot. The position of a logical record is fixed
and its relative record number (RRN) cannot change. The logical records are
grouped in CIs.

Because the slot can either contain data or be empty, a data record can be
inserted or deleted without affecting the position of other data records in the
RRDS organization. The RDF shows whether the slot is occupied or empty. Free
space is not provided because the entire data set is divided into fixed-length
slots. There may be empty spaces in the CI, referred to as unused space,
because they can never be used. This is a result of CI internal fragmentation.

Figure 1-7 shows the format of an RRDS.

Figure 1-7 General format of a relative record data set

RELATIVE RECORD DATA SET (RRDS)

CI 0

CI 3

CI 2

CI 1

SLOT 21
R
D
F

C
I
D
F

R
D
FSLOT 22 SLOT 23 SLOT 24 SLOT 25

SLOT 31
R
D
F

C
I
D
F

R
D
FSLOT 32 SLOT 33 SLOT 34 SLOT 35

SLOT 26
R
D
F

C
I
D
F

R
D
F

SLOT 36
R
D
F

C
I
D
F

R
D
FSLOT 37 SLOT 38 SLOT 39 SLOT 40

C
O
N
T
R
O
L

A
R
E
A

SLOT 27 SLOT 28 SLOT 29 SLOT 30

CI 0

CI 3

CI 2

CI 1

SLOT 1
R
D
F

C
I
D
F

R
D
FSLOT 2 SLOT 3 SLOT 4 SLOT 5

SLOT 11
R
D
F

C
I
D
F

R
D
FSLOT 12 SLOT 13 SLOT 14 SLOT 15

SLOT 6
R
D
F

C
I
D
F

R
D
F

SLOT 16
R
D
F

C
I
D
F

R
D
FSLOT 17 SLOT 18 SLOT 19 SLOT 20

C
O
N
T
R
O
L

A
R
E
A

SLOT 7 SLOT 8 SLOT 9 SLOT 10
 Chapter 1. VSAM basics 21

Typical RRDS processing
The application program inputs the RRN of the target record and VSAM is able to
find its location (using CCHHR format) quickly using a formula that takes into
consideration the geometry of the DASD device. The relative record number is
always used as a search argument.

An RRDS can be processed sequentially, directly or skip-sequentially.

� RRDS sequential access is treated the same way as ESDS sequential
access. However, empty slots are automatically skipped by VSAM.

� An RRDS can be processed directly by supplying the relative record number
as a key. VSAM calculates the RBA and accesses the appropriate record or
slot through CCHHR. RRDS direct address processing by supplying the RBA
is not supported.

� Skip-sequential access is treated like an RRDS direct processing request, but
the position is maintained. After that, records must are processed in
ascending relative record number sequence.

You specify the RRDS organization using the IDCAMS DEFINE command with
the NUMBERED option.

1.6.4 Variable relative record data set
A VRRDS is a fixed length RRDS, except that it contains variable-length records.
Each record has a unique relative record number, and is placed in ascending
relative record number order. Each record is stored and retrieved using its
relative record number. VRRDS has no slots.

The relative record number of a record cannot change. When that record is
erased, the relative record number can be reused for a new record.

Because the logical records have a variable size, it is not possible to use a
formula to derive its RBA from its RRN. In a sense a VRRDS organization is a
KSDS processed by RRN instead of a key. There is an index and data
component forming the cluster. The search argument is the RRN pointing to the
RBA of the corresponding logical record in the data component.

You can specify free space for inserting records and increasing the length of a
record. The split concept is implemented.

You specify the VRRDS organization with the IDCAMS DEFINE command with
the NUMBERED option and variable length record.
22 VSAM Demystified

1.6.5 Linear data set (LDS)
A linear data set (LDS) contains data that can be accessed as byte-addressable
strings in virtual storage. It is a VSAM data set with a control interval size multiple
of 4096 bytes. An LDS has no imbedded control information in its CI, that is, no
RDFs and CIDFs. All LDS bytes are data bytes. Logical records must be blocked
and deblocked by the application program. Logical records are transparent from
VSAM’s point of view.

In a sense, a LDS is a non-VSAM file with some of the VSAM facilities, such as
the use of IDCAMS and VSAM specific information in the catalog. The most
common LDS exploiter is DB2®.

Like the ESDS and RRDS, an LDS contains a data component only.

Figure 1-8 shows the format of an LDS.

Figure 1-8 Linear data set (LDS)

You specify the LDS organization with the IDCAMS DEFINE command
specifying the LINEAR parameter.

LINEAR DATA SET (LDS)

CI

CI

CI

CI

C
O
N
T
R
O
L

A
R
E
A

DATA

DATA

DATA

DATA

CI

CI

CI

CI

C
O
N
T
R
O
L

A
R
E
A

DATA

DATA

DATA

DATA
 Chapter 1. VSAM basics 23

Data-in-Virtual
DIV is an optional and unique buffering technique used for LDS data sets.
Application programs can use DIV to map an LDS data set or a portion of a data
set into an address space, a data space, or a hiperspace. An LDS cluster is
sometimes referred to as a DIV object.

Data is read into central storage through the paging algorithms only when that
data block is actually referenced. During RSM page steal processing, only
changed pages are written to auxiliary storage. Unchanged pages are discarded
since they can be retrieved again from the permanent data set.

DIV is designed to improve the performance of applications that process large
files non-sequentially in an unpredictable pattern. It reduces the number of I/O
operations that are traditionally associated with data retrieval. Likely candidates
are large arrays or table files.

Mapping a linear data set
To establish a map from a linear data set to a window (a program provided area
in multiples of 4K on a 4K boundary), the program issues:

� DIV IDENTIFY to introduce (allocate) a linear data set to DIV services.

� DIV ACCESS to cause a VSAM open for the data set and indicate access
mode (read or update).

� DIV MAP to enable the viewing of the data object by establishing an
association between a program provided area and the data object. The area
may be in an address space, data space, or hiperspace.

No actual I/O is done until the program references the data in the window. The
reference results in a page fault which causes DIV services to read the data from
the linear data set into the window.

� DIV SAVE can be used to write out changes to the data object.

� DIV RESET can be used to discard changes made in the window since the
last SAVE operation.

1.7 Comparing VSAM data set organizations
Table 1-2 provides a summary of the characteristics of VSAM data set types
described in this chapter.
24 VSAM Demystified

Table 1-2 Comparison of ESDS, KSDS, RRDS, VRRDS, and linear data sets

ESDS KSDS
Fixed-length
RRDS

Variable-length
RRDS Linear data sets

Records are in the
same order as
they are entered

Records are in
collating
sequence by key
field after load

Records are in
relative record
number order

Records are in
relative record
number order

No processing at
record level

Records can be
fixed or variable
length

Records can be
fixed or variable
length

Records have
fixed length

Records have
variable length

No processing at
record level

Direct access by
RBA

Direct access by
key or by RBA

Direct access by
relative record
number

Direct access by
relative record
number

Access with
Data-In-Virtual
(DIV) optionally

Consist of data
component only

Consist of data
and index
components

Consist of data
component only

Consist of data
and index
components

Consist of data
component only

Alternate index
allowed

Alternate indexes
allowed

No alternate index
allowed

No alternate index
allowed

No alternate index
allowed

A record’s RBA
cannot change

A record’s RBA
can change

A record’s relative
record number
cannot change

A record’s relative
record number
cannot change

No processing at
record level

Space at the end
of the data set is
used for adding
records

Free space is
used for inserting
and lengthening
records

Empty slots is in
the data set are
used for adding
records

Free space is
used for inserting
and lengthening
records

No processing at
record level

A record cannot
be deleted, but
you can reuse its
space for a record
of the same length

Space given up by
a deleted or
shortened record
becomes free
space

A slot given up by
a deleted record
can be reused

Space given up by
a deleted or
shortened record
becomes free
space

No processing at
record level

Spanned records
allowed

Spanned records
allowed

No spanned
records

No spanned
records

No spanned
records

Extended format
allowed

Extended format
or compression
allowed

Extended format
allowed

Extended format
allowed

Extended format
allowed
 Chapter 1. VSAM basics 25

1.8 Choosing a VSAM data set type
During the application development process, the application programmer needs
to make decisions about the data model. Among these decisions, we have data
organization, function, type of access, performance, and recovery tools you
need. VSAM has several organizations and different ways for accessing your
data. How to choose the one for your application is discussed here.

Before you select a particular VSAM organization, you need answer the following
questions:

� What is the main purpose of your data set? Does it look more like a log, a
database, or an inventory?

� Do you need to access data by a key field in sequential or direct mode?

� Do you need to access the records in sequence, skip sequential, randomly, or
all of them?

� Are all the logical records the same length?

� Does the logical record length change?

� Do you need to have insertions and deletions?

� Is the data set going to be extended?

� How often do you need to delete records?

� Do you use spanned records?

� Do you want to keep the data in order by the contents of the key field?

� Do you want to access the data by an alternate index?

� Do you want to exploit DIV?

� Do you want to use data compression?

� Do you need the utility functions provided by IDCAMS?

When you have answered these questions, you can use them to choose the best
organization for your data set. Remember that VSAM data sets cannot be
processed using non-VSAM applications. Similarly, non-VSAM data sets cannot
be processed using the VSAM access method.

Following are our recommendations for choosing a data set organization.

� Use QSAM or BSAM if:

– You use no direct processing.

– There are no insertions or deletions, and no change in the logical record
length.

– Record additions are only at the end of the data set.
26 VSAM Demystified

– You are not concerned about IDCAMS functions.

– You want to have data compression.

– Performance and easy recovery are main issues.

� Use KSDS if:

– The data access is sequential, skip sequential, or direct access by a key
field.

– You would prefer easy programming for direct data processing.

– There will be many record insertions, deletions, and logical record length
variations.

– You may optionally access records by an alternate index.

– Complex recovery (due to index and data components) is not a problem.

– You want to use data compression.

� Use VRRDS if:

– You have the same requirements as for a KSDS, but will use record
number instead of a key field as argument.

� Use RRDS if:

– The record processing is sequential, skip sequential, or direct processing.

– Easy programming for direct processing is not a requirement.

– The argument for accessing data in direct mode is a relative record
number, not the contents of a data field (key). RRDS is suitable for the type
of logical records identified by a continuous and dense pattern of numbers
(such as 1,2,3,4...).

– All records are fixed length.

– There are a small number of record insertions and deletions, and all the
space for insertions must be pre-allocated in advance.

– Performance is an issue. RRDS performance is better than KSDS, but
worse than QSAM or BSAM.

� Use ESDS if:

– You are adding logical records only at the end of the data set and reading
them sequentially (in the application control).

– The logical record is variable length

– You seldom need direct record processing by key (using AIX).

– You are using a batch processing application.
 Chapter 1. VSAM basics 27

� Use LDS if:

– You want to exploit DIV.

– Your application manages logical records.

– Performance is an issue.

Many times, you will be using a specific VSAM organization depending on the
software product you are running — for example, DB2 uses LDS data sets. In this
case you do not have the option to chose the VSAM organization.

1.9 Extended format data set
Extended format is a technique that affects the way count key data (CKD) is
stored in a 3390/3380 logical track. Extended format was first introduced to
implement data striping. It increases the performance and the reliability of an I/O
operation.

It is recommended that you convert your data sets to extended format for better
performance, additional function and improved reliability A good time to convert
to extended format is when you reorganize your VSAM data set.

All VSAM data set organizations can be defined in extended format, this includes
KSDS, ESDS, RRDS, VRRDS, and LDS. The benefits available to extended
format data sets include”

� Data striping
� Data compression
� VSAM extended addressability
� Partial space release
� System-managed buffering

When you create a VSAM component with the extended format option, there are
two major differences from those not in extended format.

� If a data set is allocated as an extended format data set, 32 bytes are added
to each physical block. This physical block suffix may increase the amount of
space actually needed for the data set, depending on the CI size. For
example, in a 3390 device with a CI size of 18432 bytes implies in additional
space of 12.5%. The 32-bytes suffix contains:

– A relative record number

– A 3-byte field to detect controller invalid padding, thus improving the
availability of the I/O operation

� The length of the data portion of the physical block is 4KB, a sort of fixed
block architecture.
28 VSAM Demystified

The block format and the suffix are transparent to the application, that is, the
application does not require internal or external modifications to create and use
the extended format data set.

Extended format also improves VSAM function. The VSAM I/O driver media
manager only writes channel programs to exploit extended format. All the new
VSAM functions are supported by media manager, therefore, EF is a prerequisite
for them.

Extended format data sets must be system-managed. A system-managed data
set must have an associated storage class and reside in a system-managed
volume. Extended format data sets are described in the catalog as striped data
sets with a stripe count of one. When a data set is allocated as an extended
format data set, the data and index are extended format. Any alternate indexes
related to an extended format cluster are also extended format.

When in extended format, there is no support for the key-range VSAM option,
MVS checkpoint restart, or hiperbatch because these options are not supported
by media manager. Key-range is not recommended in an SMS environment with
the new RAID controllers.

Certain types of key-sequenced data set types cannot be allocated as extended
format, including:

� Catalogs
� System data sets (SMS is not active at early IPL stages)
� Temporary data sets

If a data set is allocated as an extended format data set, 32 bytes are added to
each physical block. This physical block suffix may increase the amount of space
actually needed for the data set, depending on the CI size. For example, in a
3390 device with a CI size of 18432 bytes implies in additional space of 12.5
percent.

To convert a non-extended format data set to extended format, or to allocate an
extended format data set, you need to create an SMS data class (DC) with the
DATASETNAMETYPE field equal to EXT and assign the data sets to that data class.
Refer to Figure 4-8 on page 229.

1.10 Extended addressability
With extended addressability the 4 GB VSAM architectural limit for data set size
imposed by using the 4-byte field for the relative byte address (RBA) was
eliminated.
 Chapter 1. VSAM basics 29

It is important to state up-front that extended addressability and extended format
are not the same concept. Extended format is a way of storing data in a
3390/3380 logical volume. Extended addressability provides the ability to have
larger VSAM data sets. However, extended format is a prerequisite for extended
addressability.

Using extended addressability, the size limit for a VSAM data set is determined
by either:

� CI size multiplied by 4 GB
� The volume size multiplied by 59

A 4 K CI size yields a maximum data set size of 16 TB, while a 32 KB CI size
yields a maximum data set size of 128 TB. A 4K CI size is preferred by many
applications for performance reasons. No increase in processing time is
expected for extended format data sets that grow beyond 4 GB.

To use extended addressability, the data set must be:

� SMS-managed
� Defined as extended format

Refer to “Extended addressability (EA)” on page 228 to get more information on
the subject.

1.11 Data striping
Usually, in a multi-extent, multi-volume VSAM data set processed in sequential
access, processing does not allow for any type of parallelism for I/O operations
among the volumes. This means that when an I/O operation is executed for an
extent in a volume, no other I/O activity from the same task or same data set is
scheduled to the other volumes. In a situation where I/O is the major bottleneck,
and there are available resources in the channel subsystem and controllers, it is
a waste of these resources.

Data striping addresses this sequential access performance problem by adding
two modifications to the traditional data organization:

� The records are not placed in key ranges along the volumes; instead they are
organized in stripes.

� Parallel I/O operations are scheduled to sequential stripes (CIs) in different
volumes.

By striping CIs, VSAM can spread simultaneous I/Os across multiple devices.
This format allows a single application request for records in multiple tracks and
CIs to be satisfied by concurrent I/O requests to multiple volumes.
30 VSAM Demystified

The result is improved performance by achieving data transfer into the
application at a rate greater than any single I/O path.

1.12 Processing a VSAM cluster
Before we cover how to process a VSAM cluster it is recommended that you have
an idea about the source of VSAM processing options. Refer to “Major sources of
VSAM processing options” on page 233.

To process a VSAM cluster the following actions must be executed:

� Allocate the data set to establish the logical link between a program and a
data

� Open the data set, identifying it with a DDNAME.

� Accessing data through GETs and PUTs using an access method.

� Close the data set.

� Unallocate the data set.

Following is a brief discussion of the VSAM processing actions.

1.12.1 Allocating a VSAM cluster
First, we want to differentiate between data set allocation and data set creation.
The expression allocate a data set does not imply creating a data set, one can
allocate an already existing data set. Allocate a data set to a task, means to
create a data set (if it does not exist) and establish a connection between a
program running under such task with the data set. However, after allocation the
data set must first be opened in order to be accessed. This connection is
represented by an entry in the task’s TIOT (a control block) linking the DDNAME
with the UCB representing the device containing the data set.

There are several ways to allocate a data set, through a DD card, through TSO
ALLOC command, IDCAMS or by issuing the DYNALLOC macro within a
program.

The functions used at allocation time depend if the data set already exists or not:

� If it exists, its device is located through a catalog search, a serialization ENQ
is issued, and a VTOC search is executed.

� If it does not exist, a device needs to be selected by SMS and SRM. The data
set is created, an entry made in the VTOC, and catalogued (all VSAM
components must be catalogued).
 Chapter 1. VSAM basics 31

Defining VSAM Clusters
To define a cluster is an VSAM expression and it means to create and catalog the
cluster, it does not imply allocating the data set. You can define a VSAM data set
using any of the following methods:

� IDCAMS DEFINE or ALLOCATE commands. Here, clusters are defined but
not allocated to a task

� ALLOCATE TSO command allocates (defining is included) a cluster VSAM
from a TSO terminal. The TSO commands are described in MHL OS/390
TSO/E Command Reference, SC28-1969.

� JCL DD statements define and allocate a VSAM cluster. For information on
using JCL, see z/OS MVS JCL Reference, GC28-1757, and z/OS MVS JCL
User's Guide, GC28-1758.

� Dynamic allocation allocates and defines a VSAM cluster. The DYNALLOC
macro is described in z/OS MVS Authorized Assembler Services Guide,
GC28-1763.

Using IDCAMS
When using IDCAMS to define a VSAM data set, you specify:

� Component name or cluster name.

� Data set type. The default is INDEXED (KSDS).

� Space allocation, both primary and secondary allocations, and the volumes
on which the cluster’s components are to have space.

� Data set attributes, such as record size and CI size. For a KSDS, you specify
key information and free space.

� Catalog information.

Figure 1-9 shows the syntax of the DEFINE command and required parameters.

Figure 1-9 DEFINE command required parameters

DEFINE CLUSTER -
(NAME(entryname))-
CYLINDERS(primary secondary)|
KILOBYTES(primary secondary)|
MEGABYTES(primary secondary)|
RECORDS (primary secondary)|
TRACKS(primary secondary) -
VOLUMES(volser[volser...]) -

DATA (parameters) -
INDEX (parameters) -
CATALOG(subparameters)
32 VSAM Demystified

1.12.2 Accessing VSAM cluster
VSAM clusters can be accessed by different types of programs, such as batch
program, CICS® application programs, IDCAMS, and DITTO. TSO REXX and
CLISTs cannot be used to access VSAM entities.

Batch and CICS application programs
They can be written using languages that support VSAM, such as: COBOL, PL/I,
JAVA, and Assembler. To obtain VSAM services, these application programs use
VSAM macros, mainly the GET/PUT. For details, refer to DFSMS/MVS Macro
Instructions for Data Sets, SC26-4913.

IDCAMS
IDCAMS is a program included in DFSMSdfp used to establish and maintain
catalogs and VSAM clusters.

IDCAMS can be invoked:

� As a job or job step by specifying PGM=IDCAMS on the EXEC card.

� From a TSO terminal executing commands. There is also under ISPF an user
friendly option 3.2.V (VSAM utilities), that produces a panel where certain
functions may be asked. Refer to Figure 1-9.

� From an application program.
 Chapter 1. VSAM basics 33

Figure 1-10 ISPF under TSO

You can also call the IDCAMS program from within another program and pass
the Access Method Services command and parameters to the IDCAMS program.

There are two types of Access Method Services commands: functional
commands and modal commands.

� Functional commands are used to request the actual work, for example,
defining a data set or listing a catalog, see Figure 1-11.

� Modal commands allow the conditional execution of functional commands.
TSO users can use functional commands only. See DFSMS Access Method
Services for Catalogs, SC26-7394 for more information.

 Menu Utilities Help

VSAM Utilities
 Command ===>
 More: +
 Process Request Data Type
 1 1. Define 1. Alias
 2. Delete 2. Alternate Index
 3. Information (Listcat) 3. Cluster
 4. Generation Data Group
 5. Non-VSAM
 6. Page Space
 7. Path
 8. User Catalog
 9. Data *
 10. Index *
 11. NVR **
 12. Truename **
 13. VVR **
 * Listcat Only
 ** Delete Only
34 VSAM Demystified

Figure 1-11 AMS commands

DITTO/ESA
DITTO is a very powerful utility product that you can use to browse, edit, and
delete VSAM records.

You can start DITTO in full-screen mode from a TSO terminal. Check with your
system programmer how to invoke DITTO as start procedures may vary with the
installation.

In full-screen mode, you can use menus, online help, and interactive browse and
update functions. You will probably find full-screen mode the most convenient
way to run DITTO, especially if you are a new DITTO user.

You can also run DITTO in line, command, or batch modes. Refer to DITTO/ESA
V1R3 User’s Guide, SH19-8221, for more information on using DITTO.

Figure 1-12 shows the DITTO Task Selection Menu. Choose option 1 and then
option 3 to browse a VSAM data set.

I D C A M S

L O AD IN G /
U N L O AD IN G

C O P Y IN G

L IS T
D ATA
S E T S

D E LE T E
V S AM

O B JE C T S

M O D IFY
D ATA S E T

AT T R IB U T E S

L IS T
C ATAL O G

IN F O R M AT IO N

C R E AT E
V S AM

O B JE C T S

DELE
TE PRINT

R E P R O

EXPORT

D
EF

IN
E

LISTCAT

AL TE R

A c ce ss M e th od S e rv ice s (A M S)

IMPORT
 Chapter 1. VSAM basics 35

Figure 1-12 DITTO selection panel

Choose option 2 on the Task Selection Menu and then option 1 to edit a VSAM
data set.

Figure 1-13 shows the DITTO edit menu.
36 VSAM Demystified

Figure 1-13 DITTO edit function

Figure 1-14 shows an example of editing a record using DITTO.
 Chapter 1. VSAM basics 37

Figure 1-14 VSAM edit panel

1.12.3 Unallocation
Unallocation undoes what allocation did. There are three ways to unallocate a
VSAM cluster.

� Closing the data set can perform this function if FREE=CLOSE was specified
for the allocation.

� Your program can call dynamic unallocation.

� During the step termination process, the initiator/terminator program
automatically unallocates any remaining allocated data sets, not to be
accessed in the following steps.

1.13 VSAM exploiters
The major applications that exploit VSAM functions are described in this section.
38 VSAM Demystified

1.13.1 DB2
DB2 uses linear (LDS) VSAM data sets for its table spaces, without implementing
Data-in-Virtual. All the control (including buffer pool) is done by DB2. For
example, DB2 implements data striping in LDS data sets.

1.13.2 Hierarchical file system (HFS)
HFS is a UNIX® Services data organization with no determined logical records
— it is a byte string — made of embedded directories and data. It can be
accessed by Posix code (a UNIX standard for operating system interfaces, APIs)
running under z/OS or by z/OS applications. In the second case an HFS looks
like a VSAM ESDS organization and is accessed in the same way.

Accessing HFS files through VSAM
You can access an HFS file through VSAM in one of the following ways:

� JCL DD statement specifying PATH=pathname
� SVC99
� TSO ALLOCATE command

HFS files are simulated as an ESDS. However, since HFS files are not actually
stored as ESDSs, VSAM cannot simulate all the characteristics of a sequential
data set. As a result, there are certain macros and services which have
incompatibilities or restrictions when dealing with HFS files. Refer to DFSMS
Using Data Sets, SC26-7410 for more information.

1.13.3 zSeries File System (zFS)
zSeries® File System (zFS) is a z/OS UNIX file system that can be used in
addition to the Hierarchical File System (HFS). zFS provides significant
performance gains in accessing files approaching 8K in size that are frequently
accessed and updated. The access performance of smaller files is equivalent to
that of HFS. zFS provides reduced exposure to loss of updates by writing data
blocks asynchronously and not waiting for a sync interval. zFS is a logging file
system. It logs metadata updates. If a system failure occurs, zFS replays the log
when it comes back up to ensure that the file system is consistent.

Application programming interfaces
zFS file systems contain files and directories that can be accessed with the z/OS
hierarchical file system application programming interfaces on the z/OS
operating system as follows:

� An application interface composed of C interfaces, some of which are
managed within the C Run-Time Library (RTL), while others access kernel
 Chapter 1. VSAM basics 39

interfaces to perform authorized system functions on behalf of the
unauthorized caller

� An interactive z/OS shell interface by shell users

A zFS aggregate
A zFS aggregate is a data set that contains zFS file systems. The aggregate is a
VSAM Linear Data Set (VSAM LDS) and is a container that can contain one or
more zFS file systems. An aggregate can only have one VSAM LDS, but it can
contain an unlimited number of file systems. The name of the aggregate is the
same as the VSAM LDS name. Sufficient space must be available on the volume
or volumes, as multiple volumes may be specified on the DEFINE of the VSAM
LDS. DFSMS decides when to allocate on these volumes during any extension of
a primary allocation. VSAM LDSs greater than 4 GB may be specified by using
the extended format and extended addressability capability in the data class of
the data set.

1.13.4 CICS
CICS allows the exploiting of VSAM clusters by CICS transactions. CICS uses
the MVS system logger data set for logging.

1.13.5 DFSMShsm
DFSMShsm™ has three control data sets, respectively migration control data set
(MCDS), backup control data set (BCDS) and offline control data set (OCDS). All
of them are VSAM KSDSs. In a multi-MVS image environment these data sets
can be shared between distinct DFSMShsm instances. This environment is
called HSMplex.

1.13.6 DFSMSrmm
DFSMSrmm™ also uses VSAM data sets for their control data sets. They are
defined with SHAREOPTIONS(3 3) and they use the VSI control block to ensure
that they have the most recent HURBA on each system.

1.13.7 Java Record I/O (JRIO)
JRIO is a set of APIs under OS/390 2.6 (JDK 1.1.8) level allowing the access of
Java™ code to I/O record oriented data organizations. It is an additional to java.io
APIs which only supports HFS type of access.

JRIO lets Java applications access traditional z/OS file systems in addition to the
Hierarchical File System (HFS). JRIO makes it easier for Java applications to
40 VSAM Demystified

access records within files and to access file systems through native methods
when java.io Application Programming Interfaces (APIs) do not support those file
systems.

JRIO is a class library, similar to java.io. While java.io provides byte-oriented or
field-oriented access to files, JRIO provides record-oriented access, which is
much more natural. The major differences are:

� Read/write sequential and random access for a byte string data sets is
provided by java.io.

� JRIO allows:

– Read/Write, append, update-in-place (changing length), insert, delete

– Different types of records format as: fixed, variable, spanned, undefined

– Different types of access as: sequential, key direct, RBA direct, skip
sequential

JRIO lets record-oriented applications (supporting multiple file systems) run
using files on different file systems. It also provides a set of z/OS native code
drivers to access:

� Virtual Sequential Access Method (VSAM) data sets (KSDS only)

� Non-VSAM record-oriented data sets (sequential or random access)

� The system catalog (listing the High Level Qualifiers (HLQ) from the system
catalog and data sets for a given HLQ)

� Partitioned data set (PDS) directory

� HFS for sequential and random I/O access to records. The HFS support uses
pure Java code to provide a set of concrete classes and directory classes that
use the underlying java.io. JRIO also provides navigational support for HFS
directories.

To run a JRIO application, Java commands implicitly set the CLASSPATH for the
JRIO classes, which reside in the same subdirectory as the Java for z/OS
classes.

Then, you should update your CLASSPATH to include the application classes by
using the following Shell command:

export CLASSPATH=.:/u/joe/java/myclasses:$CLASSPATH

In this example, the class loader first scans the current directory for the
application classes. If that fails, the class loader then scans the
/u/joe/java/myclasses directory.
 Chapter 1. VSAM basics 41

To run the JRIO sample programs, update CLASSPATH to include the JRIO
sample classes by using the following Shell command:

export CLASSPATH=$CLASSPATH:$JAVA_HOME/recordio:
 $JAVA_HOME/recsamp.jar/

JRIO and VSAM
JRIO provides indexed I/O access to records within a VSAM KSDS. The VSAM
support uses z/OS native code to provide a set of concrete classes that
implement the KeyedAccessRecordFile class. This lets you access records:

� In entry sequence order
� By primary unique key
� By alternate unique or non-unique key

In “JRIO API examples” on page 364, you’ll find a set of APIs that you may use to
access KSDS VSAM data sets.
42 VSAM Demystified

Chapter 2. Performance

How can you get most out of your VSAM clusters? How can you improve data
storage and retrieval? What parameters can be used when you define a VSAM
data set to enhance data access?

This chapter answers these questions and describes the VSAM functions that
can enhance performance. Hints and tips are provided to help you implement
these VSAM functions. However the specific performance aspects of VSAM RLS
and Transactional VSAM are discussed in their respective chapters.

Before we discuss VSAM performance, we first review some performance
basics.

2

© Copyright IBM Corp. 2001, 2003. All rights reserved. 43

2.1 Service level agreement
To make the subject of performance more objective and related to specific
business needs, the Service Level Agreement or SLA was introduced.

The SLA is a agreement between Information Systems organizations and user
departments that should describe:

� Average transaction response time (Tr) for accessing:

– Network
– Input/output (I/O)
– CPU

� The distribution of the response times, a measurement about how erratic they
are

� The throughput, also called external throughput rate (ETR), measured in
ended transactions per second of elapsed time (not CPU time)

� System availability, which is the percentage of time that the system is
available to the end user

2.2 Transaction performance
A transaction is a business unit of work produced by an online or batch
interaction with an end user or a department with the system. It can be a CICS,
TSO, a WEB, an APPC, distributed DB2, or even a batch interaction. If your MVS
is in Workload Manager (WLM) goal mode, all these transactions are monitored
and accounted for by z/OS.

To characterize the performance of a transaction, we need to understand its
different response time components. Figure 2-1 shows general response time
components, where:

� Tr = Ts + Tw

Ts is Service Time, Tw is Waiting Time (also called queue time), and Tr is
Response Time
44 VSAM Demystified

Figure 2-1 Response time components

� Exploding the above formula, we have:

Ts = Ts(CPU) + Ts(IO) + Ts(TP)
Tw = Tw(CPU) + Tw(IO) + Tw(TP) + Tw(Storage) + Tw(Other)

� ETR = Ne / T

ETR is the External Throughput Rate, Ne is the number of ended
transactions, T is the elapsed time.

� There is also one formula relating the Tr with ETR, derived by Little’s law:

ETR = N / (Tt + Tr)

In this formula, N is the average number of users sending transactions
(logged on), and Tt is the average thinking time of these users. Following are
some considerations regarding this formula:

– The variables that more intensively affect the ETR are N and Tt due to
their usual numeric values. Therefore, you should never accept an SLA
specifying ETR, because the only variable that the IS department can
directly control is Tr.

Tw (CPU): Time with ready dispatchable units, but not enough dispatching priority.
Tw (I/O): Time with I/Os delayed in UCB or channel subsystem.
Tw (TP): Time in the VTAM or TCP/IP queues.
Tw (Storage): Time suffering a page fault or being swapped-out.
Tw (Other): Time delayed by operator, ENQ, data set recall, server AS service.
Ts (CPU): Time with dispatchable units executing CPU.
Ts (I/O): Time with I/Os being executed (connected or disconnected).
Ts (TP): Time being transported in the network.

Tw Ts

Tw
CPU

Tw
I/O

Tw
TP

Tw
Storag

e
Tw

Other
Ts

CPU
Ts
I/O

Ts
TP

Tr

Exploding the Response Time (Tr)
 Chapter 2. Performance 45

– However, experiences show that when Tr is in a sub-second value, the
value of Tt drops dramatically. This fact has to do with the human behavior
in front of a terminal. If the machine responds fast (in a sub-second value),
we also respond fast.

Transaction response time is the best way to characterize the performance of a
transaction. Here, the target is to reduce its value and consequently to increase
the ETR figures (when the value is below one second). Remember that in RMF
reports the Ts(TP) and Tw(TP) are not included in the response time pictured.

2.3 Performance management
Performance management is the activity in an installation that monitors and
allocates data processing resources to transactions according to a service level
agreement (SLA).

There are three main ways to solve performance problems:

� Buy: You can simply buy more resources.

� Tune: Tuning your system makes more effective and efficient use of those
resources.

� Steal: You can “steal” the resources from a less critical transaction.

2.3.1 I/O performance
As CPU speed increases, the I/O response time (I/O Tr) is the determinant factor
in the average transaction response time, as shown in the formula:

I/O Tr = I/O Ts + I/O Tw

So obviously, you can get excellent response time returns by reducing I/O wait
time and I/O service time.

Generally speaking, you can reduce the average I/O response time (I/O Tr) using
software or hardware techniques. The software techniques aim to decrease the
number of I/O operations, by implementing:

� Virtual address space (above and below the bar) buffer and data space
buffers

� Hiperspace™ buffers

� Data compression

� Data striping
46 VSAM Demystified

Examples of hardware techniques are:

� Faster channels (as FICON™, FICON Express)

� Faster device paths (adapters) to the controllers

� Larger controller cache

� More DASD subsystem concurrency, for example, parallel access volumes
(PAV) in Enterprise Storage Server® (ESS).

� Faster disks (RPMs), small size, RAID-10

However, experience has shown that when you succeed fighting an I/O
bottleneck, increasing the I/O rate (for example, implementing data striping),
suddenly the bottleneck is moved from the I/O subsystem to the processor.

2.4 VSAM performance management
The goal of VSAM performance management is to decrease the values of I/O
wait time (Tw(IO)) and I/O service time (Ts(IO)) — that is, the I/O response time
(Tr(IO)), for the transactions accessing VSAM data. It can be done by avoiding
I/O or doing it faster and playing with I/O priorities. These priorities must be
closely linked to your business needs.

In this performance chapter, we use two approaches to help you to improve
VSAM performance. First, we discuss all the VSAM external parameters whose
values may affect performance. We give recommendations based on experience,
on how those parameters should be set. This is known as “rule-of-thumb” (ROT)
mode. At each topic end you have a set of recommendations, which summarize
the explanations.

In the second approach, we simulate a scenario (as real as possible), where one
or several VSAM data sets are causing performance problems to key
transactions in a real installation. We suggest a methodology to fix the situation.
Here some of the recommendations covered in the rules of thumb are presented
again, now connected with an specific VSAM behavior.

Also, other factors not connected to VSAM parameters, such as I/O configuration
delays, use of FICON channels, SMS storage class attributes, use of
Hiperbatch™, and workload CPU bound, are introduced and discussed.

Throughout this chapter, you see a set of screens containing real RMF reports
covering VSAM I/O measurements related to the theories presented. These
measurements were obtained in our lab setup described in “General lab
description” on page 396.
 Chapter 2. Performance 47

2.5 VSAM rule-of-thumb mode
Before we start, let us make a general statement about VSAM cluster parameters
affecting performance and their defaults. You should note that these defaults
were established a long time ago, when virtual storage was all below the 16 MB
line; central storage size restricted; the DASD was slow, removable, and
expensive; and channels were a scarce resource.

Therefore, the defaults are outdated in many cases. The reason IBM does not
change the defaults is to maintain compatibility with your existing workload.
Compatibility is an important feature protecting your investment. You do not need
to throw out your code and hardware when z/OS changes a release. However,
keep in mind that these VSAM defaults can be easily overwritten through JCL,
the ACB macro, data class constructs, ACS routines, or IDCAMS.

2.5.1 Invalid rules-of-thumb
Another important point to mention is that you may have heard many
recommendations about data set placement and the effect on I/O performance.
We call these recommendations “invalid rules-of-thumb” (IROTs). Generally
speaking, they are out of date due to the introduction of the RAID controllers and
enhancements to channel programs, such as these:

� The physical 3390/3380 volume concept no longer exists, and we do not
know where their logical tracks are located on the disks, so we should not
care about seek arm movement considerations, in such devices.

Also, in the past we had several changes in the device geometry as new
products were introduced. Now the logical 3390/3380 geometry will still be
valid for a long time because it is not affected by enhancements to the disk
controllers. For example, the device independence recommendation (records
instead of tracks for units of allocation), due to changes in future track or
cylinder geometry, is not a consideration anymore.

� In the case of a cache miss, the channel always reads (or writes) in cache,
asynchronously in relation to the disk, so there are no extra revolutions.
caused by 3390 RPS misses.

� The existence of the Define Extent Format CCW, the Prefix CCW, and Parallel
Access Volume (PAV) for the Enterprise Storage Server (ESS).

The following recommendations (IROTS), are no longer valid:

� Place your VTOC around the middle of the volume, or at 1/3 for the purists.

� If you need to place two active data sets in the same volume, place them
close to each other, to avoid arm stealing along seeks.
48 VSAM Demystified

� Do not allow much secondary allocation in the same volume because of the
embedded long seeks in the same data set.

� Use VSAM KSDS embedded sequence set index records to minimize seeks.

� Use VSAM KSDS replication to avoid unnecessary revolutions.

� When allocating a data set on device dependent geometry, use cylinders, not
tracks, for better performance.

� It is better to use a device independent geometry for allocation units (for
example, records) to avoid modifications when the 3390/3380 geometry
changes.

� Reorganize your KSDS data set after some CA splits in order to avoid long
embedded seeks. (For information on VSAM KSDS data set reorganization
refer to 4.1, “Reorganization considerations” on page 204.)

� Avoid channel utilization above 30% to inhibit RPS misses and another DASD
revolution.

� Use VSAM keyrange to have control over the allocation of the key ranges of
your data set.

� Avoid many active data sets in the same ESS volume.

2.6 Parameters affecting performance
The following VSAM parameters and options can affect performance.

2.6.1 Allocation units
When you define your new data set, either the end user or SMS administrator
through defining a data class (DC) must specify the amount of space to be
allocated for it. One of the allocation functions for a new data sets is the creation
of the DSCB in the VTOC, is done by the DADSM routine. Refer to “Allocating a
VSAM cluster” on page 31, for more information about allocation. If SMS is
active, you can specify a data class and take advantage of the space allocation
set by your storage administrator. If you choose to specify space explicitly, you
can specify it for VSAM data sets in units of records, kilobytes, megabytes,
tracks, or cylinders.

DADSM only accepts allocation requests in tracks or cylinders. The units
specified (records, kilobytes, or megabytes) are converted by IDCAMS before the
DADSM request.

If you specify records as the allocation unit, the number of records you declare is
multiplied by the value of the keyword RECORDSIZE(AVERAGE) value, to derive
 Chapter 2. Performance 49

the space in bytes. This keyword can also indicate the maximum value allowed
for the record length. Later during the access, If the maximum record length is
exceeded, VSAM rejects the new record.

When the primary amount on the first volume is used up, a secondary amount is
allocated on that volume by the end-of-volume (EOV) routine. VSAM acquires
space in increments of control areas (CAs). Each time a new record does not fit
in the allocated space, EOV allocates more space in the secondary space
amount. This can be repeated until the volume is out of space or the extent limit
is reached. Depending on the type of data set allocation request, a new volume
may be used.

Do not define a small amount of secondary space allocation value, especially for
a KSDS or a VRRDS data set. There are a large number of I/O operations
involved when the secondary allocation takes place.

We do not state any recommendations on allocation because these depend on
the use, or not, of the Guaranteed Space option.

2.6.2 Guaranteed Space
The allocation function depends on whether the data set has the Guaranteed
Space attribute.

The Guaranteed Space, a storage class SMS attribute lets you reserve space on
specific volumes (VOLSER) for clusters that require special placement to meet
performance or availability requirements. For example, IMS™ logs that are
duplexed by IMS to improve availability should be on separate volumes. However,
the specified volumes must be described in the storage group associated with
the cluster.

Typically, you use storage class performance and availability attributes and
storage group assignments to determine where to place your data set. You
assign storage groups in your storage group ACS routine. SMS then selects
volumes by evaluating each candidate's ability to satisfy the performance,
availability, and space requirements for the data set. To place data sets on
specific volumes, assign a storage class to the data set that supports
Guaranteed Space and maps to the correct storage group. If the resulting
storage group does not contain the specified volume, or all the volumes are not in
the same storage group, the allocation will fail.

For non-guaranteed space data set allocation, when you allocate space, it is
possible for the user to specify whether to use primary or secondary allocation
amounts when extending to a new volume. This is done with an SMS
50 VSAM Demystified

DATACLASS parameter for VSAM attributes, as shown in Figure 2-2, of the ISMF
application.

Figure 2-2 Data Class panel

For a Guaranteed Space data set allocation, the following conditions must met:

� All volumes specifically specified in VOLSER belong to the same storage
group.

� The storage group to which these volumes belong is in the list of storage
groups selected by the ACS routines for this allocation.

We recommend that you allocate space at the data component level, because
this is the component that you are able to size. VSAM allocates space as follows:

� If space is specified at the cluster or alternate index level (refer to 1.5.11,
“Alternate indexes” on page 14), the amount needed for the index is
subtracted from the specified amount. The remainder of the specified amount
is assigned to data.

� If space is specified at the data component level only, the specified amount is
assigned to data. The amount needed for the index is in addition to the
specified amount.

� If allocation is specified at both the data and index levels, the specified data
amount is assigned to data and the specified index amount is assigned to the
index.

� If secondary allocation is specified at the data level, secondary allocation
must be specified at the index level or the cluster level.

Recommendations
� For KSDS and VRRDS formulate space for data component only.

 ADDITIONAL The ADDITIONAL VOLUME AMT field shows the type of allocation
 VOLUME AMT amount when a VSAM data set in extended format begins
allocation
 ---(15)--- on subsequent new volumes.

 Possible values:

 PRIMARY Primary allocation amount has been requested.

 SECONDARY Secondary allocation amount has been requested.

 --------- If the value has not been specified. The system will use
 the default value of Primary.
 Chapter 2. Performance 51

� Use the most you can space information from data class definition.

� Avoid Guaranteed Space.

� Avoid to use tracks as unit to get rid of the contiguous requirement. Use
records, this unit is closer to the application needs.

� Do not use a very small secondary allocation figure.

� Consider using “Allocation constraint relief” on page 54.

2.6.3 Optimizing control area (CA) size
Before we discuss this topic, we want to clarify that when we say cylinder and
track, we are referring to the logical 3390/3380 cylinder and track, not the
cylinder and track of the disks in the RAID DASD controllers.

Generally, the primary and secondary space allocation amounts determine the
CA size, as follows:

� If either the primary or secondary allocation is smaller than one cylinder, the
smaller value is used as the CA size.

– TRACKS(100,3): This results in a 3-track CA size.

– TRACKS(3,100): This results in a 3-track CA size.

– KILOBYTES(100,50): The system determines the control area based on
50 KB, resulting in a 1-track CA size.

– RECORDS(2000,5): Assuming that 10 records would fit on a track, this
results in a 1-track CA size.

� If both the primary and secondary allocations are equal to or larger than one
cylinder, the CA size is one cylinder. An exception is for data striping, where
the CA size can be 16 tracks (one more than the cylinder) — the maximum
size for a CA.

– CYLINDERS(5,10): This results in a 1-cylinder CA size.

For KSDS and VRRDS organizations the index CI size and buffer space can also
affect the CA size. The previous examples assume the index CI is large enough
to handle all the data CIs in the CA, and the buffer space is large enough not to
affect the CI size.

A spanned record cannot be larger than a CA minus the control information size
(10 bytes per CI for fixed logical records length). Therefore, do not specify large
spanned records and a small primary or secondary allocation which results in a
CA not large enough to contain the largest spanned record.

CA size has significant performance implications. One-cylinder CAs have the
following advantages:
52 VSAM Demystified

� There is a smaller probability of CA splits.

� The index is more consolidated. One index CI addresses all the CIs in a CA. If
the CA is large, fewer index records and index levels are required. For
sequential access, a large CA decreases the number of reads of index
records.

� There are fewer sequence set index CIs because there are less CAs of one
cylinder size. In sequential access all those records need to be read. Fewer
index CIs means more effective channel programs.

� If you have allocated enough buffers, a large CA allows you to read more
buffers into storage at one time. A large CA is useful if you are accessing
records sequentially.

� The overlap between I/O and CPU for sequential processing is done in a CA
boundary. When reached the application must wait until the last input/output
to the CA is done before proceeding to the next CA. The I/O operations are
always scheduled within CA boundaries.

The following disadvantages of a one-cylinder CA must also be considered:

� If there is a CA split, more data is moved.

� During sequential I/O, a large CA ties up more real storage and more buffers.

2.6.4 Partial release
Partial release is used to release data (not index) unused space from the end of
an extended format data set. Refer to 1.9, “Extended format data set” on
page 28. Partial release is specified through the SMS management class or by
the JCL RLSE subparameter.

All space after the high used RBA (HURBA) is released on a CA boundary up to
the high allocated RBA (HARBA). Refer to 3.8, “IDCAMS LISTCAT output fields”
on page 187, to get more information on HURBA and HARBA. If the high used
RBA is not on a CA boundary, the high used amount is rounded to the next CA
boundary. Partial release restrictions are:

� Alternate indexes (AIXs) opened for path or upgrade processing are not
eligible for partial release. The data component of an AIX when opened as
cluster could be eligible for partial release.

� Partial release processing is not supported for temporary close. Temporary
close (TYPE=T) means that the ACB is still opened, so there is no need of an
Open to restart processing. However, the data set looks closed with EOF
marks at the end.

� Partial release processing is not supported for data sets defined with
guaranteed space.
 Chapter 2. Performance 53

� Extended format is a requirement.

2.6.5 Allocation constraint relief
Users occasionally encounter data set allocation or extension failures (X37
abends) because there is not enough space available on a volume to satisfy the
request. SMS alleviates this situation to by performing volume selection,
checking all candidate volumes before failing an allocation.

You can also use SMS data class the Space Constraint Relief and Reduce
Space Up To (%) attributes to request that an allocation be retried, if it fails due to
space constraints.

Recommendations
� Do not define a small amount of secondary space allocation for a KSDS or

VRRDS data set.

� Allocate space at the cluster or data levels.

� Do not use tracks as an allocation unit; this forces the CONTIG attribute for
secondary allocations.

� Avoid either primary or secondary allocation smaller than one cylinder,
because it makes the CA size less than one cylinder.

� Consider partial release, if applicable.

� Consider constraint relief, if applicable.

2.6.6 Control interval size
There are two types of control intervals (CIs) in a KSDS and VRRDS: the index
and the data. The other VSAM organizations only have data CIs. The data CI and
index CI sizes are declared in the IDCAMS DEFINE command and kept in the
catalog. If you define CI size for the cluster, this value is used for both data CI
and index CI. In the following sections we offer recommendations about how to
size both.

Data control interval size
There are arguments favoring both large and small CI sizes. Let us look at each
of these possibilities:

� For sequential processing, larger data CI sizes are desirable. For example,
given a 16 KB data buffer space to be fulfilled, it is faster to read two 8 KB CIs
with one I/O operation than four 4 KB CIs with one operation.

� A large CI is a more centralized management of the free space CI, and
consequently causing fewer CI splits. One component with one 16 KB CI with
54 VSAM Demystified

20% of free space has less splits than a two 8 KB CIs with the same 20% of
free space.

� For direct processing, smaller data CIs are desirable because the application
only needs to retrieve one logical record at a time, then avoiding useless data
transfer.

� For data set shared access within an address space, refer to 4.3.3, “Sharing
data in a single VSAM control block structure” on page 218. The size of the CI
affects the amount of data locked by VSAM; the smaller, the better.

In conclusion, for data sets accessed both randomly and sequentially, a small
data CI with multiple buffers to help for sequential processing can improve
performance.

Index control interval size
Usually you do not specify index CI size for KSDS and VRRDS. Let VSAM
calculates it. Recall that VSAM uses one index record per each data CI and one
index CI per each data CA. The size of the index CI affects:

� The number of levels in the index set. However, the number of indexes will
effect the performance only for very large clusters that are greater than four
levels.

� The usable capacity of a data CA. Sometimes a small index CI size may
cause some loss in the usable capacity of the associated data CA. For the
calculation of the CI index size, VSAM assumes a compressed key of 5 bytes.
Sometimes the key does not compress well and this assumption is
underestimated. Pay attention that at z/OS 1.3 the formula used by VSAM to
calculate the index CI size changed. To see this modification and also to
determine if your CI size is too small and because of this you are losing data
CA space, refer to 4.2, “New Index CI size calculation algorithm” on page 208.

Recommendations
� For sequential access, define data CIs with 16 KB or larger.

� For random access, define data CIs with 4 KB.

� For mixed random and sequential access, define data CIs with 4 KB (for
favoring random access) and plenty of buffer space in the buffer pool
(allowing CCW chaining for sequential access).

� Let VSAM derive the size of the index CI. Define it yourself only when you are
losing data CA capacity due to small CI index size.
 Chapter 2. Performance 55

2.6.7 FREESPACE definition for KSDS and ESDS
Freespace option specifies, through IDCAMS DEFINE (kept in the catalog), the
percentage of each data CI and each data CA is to be set aside as free space
when the cluster KSDS or VRRDS is initially loaded or when a mass insertion
(writes skip sequential) is done. You can change the amount of free space using
the IDCAMS ALTER command. Free space is specified as a percentage. If the
FREESPACE amount is altered after the data set is initially loaded, and
sequential insert processing is used, the allocation of free space is not honored.

The syntax of the FREESPACE parameter is:

FREESPACE(CI-percent CA-percent)

There is no free space external specification for index CIs or index CAs.
Freespace is used to reduce the number of CI and CA splits along insertions or
updating in-place records with a length increase.

When you specify free space in CI (first value in FREESPACE CI percentage),
ensure that the CI free space percentage does not result in lots of unused free
space. You can ensure this by taking into account the logical record length, the
size of the CI, and the length of CIDF and RDFs. Following is a numeric example:

� Assuming a fixed length record data set, where each CI is 4096 bytes,
10 bytes are reserved for control information (2 RDFs and 1 CIDF). Each
logical record has 1000 bytes and you want to reserve room for 10%
inclusion.

� If you specify 10% of CI free space VSAM reserves 410 bytes (4096 * 0.10)
for free space. The logical record space is 3676 (4096 - 420) bytes.

� Because the records loaded in the data set are 1000-byte records, there is
only space for three records, leaving 1086 (410 + 676) for insertions. In this
free space you can fit another logical 1000 byte record, so your free space
setting is correct. You are loosing only 86 bytes of unused space. All this
calculation is done for a non-compressed data set. For compression
information, refer to 2.6.15, “Data compression” on page 94.

For CA free space, VSAM ensures that at least one CI per CA remains empty
during loading when you declare a FREESPACE CA percentage amount other
than zero.

Too much free space in a CI or CA can result in:

� Increased number of index levels be cause less data per data CI/CA, which
affects run times for direct processing slightly.

� More DASD storage required to contain the data set.
56 VSAM Demystified

� More I/O operations required to sequentially process the same number of
records. Note that these extra I/O operations are only affected by an excess of
CI free space. CA free space does not increase the number of I/O operations
in a sequential read because totally free CIs are not moved to storage.

Too little free space can result in an excessive number of CI and CA splits
(depending on the key pattern of the records to be inserted), with consequences
such as:

� The CA splits are resource consuming, due to the overhead (during the split),
since approximately half of the CIs from the CA are moved to the end of the
data set.

� CI and CA splits may also affect the sequential processing because the DASD
controller, to better use the cache, only detects 3390/3380 tracks physical
sequence. Splits make the logical sequence different from the physical
sequence.

Determine the amount of CI free space based on the percentage of record
additions expected, and their distribution.

If you know in advance the pattern of the keys being inserted, you can take
advantage of it by choosing the technique best suited for the application.

Recommendations
� Determine the amount of CI free space based on the percentage of record

additions expected, and their distribution:

No additions. If no records will be added and if record sizes will not be
changed, there is no need for free space.

Few additions. If few records will be added to the data set, consider a free
space specification of (0 0). When records are added, new CAs are created to
provide room for additional insertions.

If the few records to be added are fairly evenly distributed, CI free space
should be equal to the percentage of records to be added (FSPC (nn 0),
where nn equals the percentage of records to be added.)

Evenly distributed additions. If new records will be evenly distributed
throughout the data set, CA free space should equal the percentage of
records to be added to the data set after the data set is loaded. (FSPC (0 nn),
where nn equals the percentage of records to be added.)

Unevenly distributed additions. If new records will be unevenly distributed
throughout the data set, specify a small amount of free space. Additional
splits, after the first, in that part of the data set with the most growth will
produce CIs with only a small amount of unneeded free space.
 Chapter 2. Performance 57

Mass insertion. If you are inserting a group of sequential records, you can
take full advantage of mass insertion by using the ALTER command to
change free space to (0 0) after the data set is loaded.

Additions to a specific part of the data set. If new records will be added to only
a specific part of the data set, load those parts where additions will not occur
with a free space of (0 0). Then, alter the specification to (n n) and load those
specific parts of the data set.

2.6.8 Index options
There are two index options associated with a cluster defined in the IDCAMS
DEFINE command and stored in the catalog respectively REPLICATE and
IMBED. They exploit 3390/3380 characteristics.

Beginning with DFSMS 1.5 this parameter is no longer valid. No warning
message is issued. Because of that they are not discussed here.

Recommendations
� Do not use REPLICATE.
� Do not use IMBED.

2.6.9 Key Range and Ordered
Key Range, for example, allows the user to select a volume to a set of keys in a
collating sequence (another volume to another set). The major reason of that is
to increase the parallelism of access, because you use multiple volumes.
Ordered implies that the order of declared volumes must be followed along
secondary allocation.

These options are not recommended anymore, because they place a burden in
the user. It is recommended that they not be used on z/OS 1.3 systems and up,
because they are not supported.

2.6.10 Share options
There are several mechanisms to implement VSAM data set integrity (read and
write integrity). They are:

� Intra address space locks for serializing VSAM data sets among tasks of the
same address space.

� VSAM SHAREOPTIONS play an important role in VSAM integrity, specifying
whether and to what extent VSAM data sets are to be shared among tasks in
one or multiple z/OS address spaces. This feature uses ENQ on
SYSVSAM.data-set-name in order to achieve the required serialization.
58 VSAM Demystified

� ENQ/Reserve serialization functions issued by the application.

� JCL disposition (OLD or SHR), which also implies in an ENQ.

� Record level sharing (RLS) locking mechanism, which is covered in “Define
CF lock structures” on page 258.

The reason that we are covering these mechanisms in the performance chapter
is because usually integrity and performance vary inversely. Total integrity may
result in bad performance.

When you define VSAM data sets, you can specify how the data is to be
serialized (if shared) within a single system or among multiple systems that can
have access to your data. Before you define the level of sharing and the
serialization mechanism for a data set, you must evaluate the consequences of
reading incorrect data (a loss of read integrity) and writing incorrect data (a loss
of write integrity). And the situations that can result when one or more do not
adhere to guidelines recommended for accessing such shared data sets. On the
other hand, it is important to avoid the unnecessary use of certain serialization
functions which may cause a performance degradation.

Refer to 4.3, “Sharing VSAM data sets” on page 212, for more information.

Recommendations
� If you are sure that no application updates or deletes the VSAM data set, then

do not use SHAREOPTIONS 4. It causes bufferpool refresh for direct reads or
writes. The bufferpool is useless and no I/Os are saved.

� If you are doing your own serialization use ENQ SHARE instead of ENQ
EXCLUSIVE for reads.

� In a cross-systems environment, avoid the use of the RESERVE macro,
which locks the full 3390/3380 logical volume. Instead use the ENQ macro for
a global resource with GRS. However, for applications already using the
Reserve macro, it can be transformed (without changing the code) in a
Systems ENQ through the GRS Conversion RNL.

2.6.11 Initial load option
Initial load mode occurs when you load (write) your data sequentially in a VSAM
data set which has a High Used RBA (HURBA) equal to zero. The data set to be
loaded is already IDCAMS defined (cataloged and described through the DSCB
in VTOC). Initial load can be done through by IDCAMS REPRO, IMPORT or
application program. There are two cases:

� After the DEFINE indicating that this is the first time you are writing into the
data sets its initial contents, or
 Chapter 2. Performance 59

� When a data set, defined with the REUSE attribute, is opened with
MACRF=RST (reset) in the ACB, meaning that you reusing the data set with
new data.

You need to load a data set first, because in VSAM non-RLS mode, your
application program cannot open for input to an empty data set.

Initial load uses a NSR buffering, refer to “Non-shared resources (NSR)” on
page 68.

RECOVERY and SPEED options
There are two options where performance of an initial load process may be
affected, respectively RECOVERY and SPEED. Those options have to do with
the techniques used by an access method for creating physical records:

� RECOVERY. This option first formats a 390/3380 track (erases the previous
contents) by executing the Write Count Data CCW (also called Write Format)
creating physical records full of zeroes in the Data part (of a CKD physical
record). These zeroes mean a VSAM end-of-file indicator.

� The data portion of tracks are filled with real data by executing the Write Data
CCW (Write Modified). The I/O response time for the load almost doubles.
Read “DASD cache highlights” on page 126, for more information on Write
Format and Write Modified CCWs. The tracks beyond HURBA are not
formatted.

� The Recovery option allows the restart of the load operation from the last
written record (just before the first end-of-file physical record), however other
difficulties such as tape repositioning (in the input file) have inhibited
customers from using it.

� SPEED: The data CIs/CAs are not pre-formatted with zeroes. The Write
Count Data CCW is executed (in just one pass) creating the physical record
with real data in the data part. An end-of-file indicator is written only after the
last record is loaded. As in the Write Modified type of channel program (in
RECOVERY), many writes are assembled in the same channel program to
improve CPU and I/O usage (depending on the number of NSR data buffers).
However free CIs (if you declare CAs with free CIs) are not written together
with occupied CIs in the same channel program.

Table 2-1 this table compares the RECOVERY and SPEED options

Initial
Load

Extended
Format

EXCP Total
Connect
Time
(msec)

CPU TIME
(sec)

Elapsed
time (sec)

Recovery Yes 22276 36881 7.8 64
60 VSAM Demystified

Because it has just one pass, with SPEED you get better performance for initial
load mode. Refer to Table 2-1.

Be aware that during load mode processing, you cannot share data sets. Share
options are overridden during load mode processing to (1 3). When a shared
data set is opened for create or reset processing, your program has exclusive
control of the data set within your operating system by the use of the ENQ
Systems exclusive in the SYSVSAM resource. If data sets are shared between
systems, never place this resource name in the exclusion list.

There are other VSAM options affecting the initial load performance:

� System managed buffering (SMB) due to better buffer management.

� Extended format; refer to 1.9, “Extended format data set” on page 28.

Recommendations
� Do not use the RECOVERY option.

� Use SMB.

� Use extended format.

� Remember that any specific SHAREOPTIONS assignment in an initial load is
forced to (1 3).

2.6.12 Region size
The key to reducing the number of I/O operations is to keep more data in virtual
storage. The recommendations given here go in this direction. So, before you
implement them, you should review the region size parameter to avoid an S878
type of abend, as shown in the following VSAM message:

Recovery No 20569 33156 7.7 60

Speed No 8604 16993 7.5 35

Speed Yes 8605 20079 7.6 38

Initial
Load

Extended
Format

EXCP Total
Connect
Time
(msec)

CPU TIME
(sec)

Elapsed
time (sec)
 Chapter 2. Performance 61

Figure 2-3 VSAM message indicating too small a region size

The portion of the user's private area within each virtual address space that is
available to the user's programs is called the user region (located from the
bottom to top of the private area). The region size is the amount of storage in the
user region available to the job, started task, or TSO/E user. Figure 2-4 shows
the virtual storage layout. For a description of each area, refer to the OS/390
MVS Initialization and Tuning Guide, SC28-1751.

Figure 2-4 Address space layout

IDC3351I ** VSAM CLOSE RETURN CODE IS 136
Not enough virtual storage was available in the program's address space for
a work area for Close
62 VSAM Demystified

You specify a job's region size by coding the REGION parameter in the JOB or
EXEC statement. The system rounds all region sizes to a 4K multiple. Some jobs
run out of virtual space and abend when:

� The REGION specified is greater that the available private area.

� A private area GETMAIN reaches the limit determined by the IEFUSI exit (the
default is the specified REGION plus 64K) even if there is virtual free space
available.

� A private area GETMAIN cannot be served because no contiguous virtual
free space exists with the required size. This means a collision between the
top-to-bottom and bottom-to-top subpools.

Refer toTable 2-2 to understand how the JCL REGION parameter is interpreted
and how much virtual storage is available, below and above 16 MB, for each step
of a job.

Do not hesitate to increase your job region size, or even avoid it by specifying
REGION=0. Good buffering can reduce the number of I/Os, job elapsed time,
CPU time and device connect, and disconnect time. If your job is I/O bound, then
by giving it enough resources, it executes more quickly. That is a benefit for the
user and for total system performance.

Table 2-2 Region JCL parameter

If your job is experiencing constraints in virtual storage below 16 MB when VSAM
data sets are opened, you can relieve storage usage below 16 MB by specifying
that VSAM allocate the buffers and/or control blocks above 16 MB. For details,
refer to “Locating VSAM buffers above 16 MB” on page 81.

2.6.13 Buffering options
Buffering in virtual storage is an important technique in VSAM to improve
performance. You have the possibility of using this technique through the
buffering options.

REGION value Region available below 16 MB Region available above 16 MB

0k > REGION < 16 MB Establishes the private area size
below

32 MB

16 MB > REGION =< 32M All private area below is available 32 MB

32 MB > REGION =< 2G All private area below is available Establishes the private area size
available above 16 MB

0K or 0M All private area below is available All private area above is available
 Chapter 2. Performance 63

A VSAM resource pool is a set of VSAM control blocks plus a buffer pool. These
control blocks are not enough to allow the data set to be processed. At open time
more control blocks are created, which together with the buffer pool form a
structure control blocks. Here are several key aspects for managing a buffer pool:

� The algorithm to keep CIs in the buffers. For random it is LRU, the most
accessed CIs are kept in buffer. For sequential access, it uses the sequential
algorithm, which has two pieces: look ahead for reads and to dispose of any
CI already processed (reads or writes) to make room for the new ones.

� What to do with the CIs updated in the buffers. Should they be stored through
in DASD immediately or later? For random, there is an option called Defer
Write, where the installation decides what to do. For sequential, VSAM defers
the write until half of the buffers are ready for the write. VSAM Shareoptions
may change this behavior. Refer to “Share options” on page 58.

� The amount of buffers can degrade the performance. For random it is
recommended to have all the index CIs and lots of data CIs in the buffer pool.
For sequential just one index CI buffer (sequence set) and many data CIs
buffers for the look ahead.

� When the same cluster is shared between two applications (for read/write) in
different MVS systems, the coherency of the buffer pool must be guaranteed.
That is, if a CI is altered in a local buffer pool, the other local buffer pool
should reflect such change.

When a buffer's contents are written, using direct access, the buffer's space is
not released. The control interval remains in storage until overwritten with a new
control interval. If your program refers to that control interval, VSAM does not
have to reread it. VSAM checks to see if the desired control interval is in storage.
This is not valid for share option 4, where buffers used for direct processing are
refreshed for each request.

Buffer space is released when all data sets that are using the buffer pool are
closed, and for the LSR/GSR, the DLVRP macro is issued. If an abend occurs
before closing VSAM data sets, the buffers are not flushed by VSAM or MVS
Recovery Termination Manager routines. It is left to the application decision
throughout the use of an (E)SPIE/(E)STAE routine to close the data sets and
consequently flush the buffers. For details about ESTAE and ESPIE macros,
refer to OS/390 MVS Programming: Authorized Assembler Services Reference,
Volume 2 (ENFREQ-IXGWRITE), GC28-1765. Pay attention that such routines
do not gain the control when the abend is caused by an operator CANCEL
command. Also there are options (TRAP) in Language Environment® to control
the flush or not flush of those buffers.

Choosing the adequate VSAM buffer length and buffering technique is the key to
reducing the number of I/Os and reducing the I/O response time (Tr). More
buffers (either data or index) than necessary might cause excessive paging or
64 VSAM Demystified

excessive internal processing. There is an optimum point at which more buffers
do not decrease the job elapsed time and device connect time. You can see that
in Table 2-4 on page 71. You should attempt to have data available just before it
is to be used. If data is read into buffers too far ahead of its use in the program, it
can be paged out.

For more efficient use of virtual storage, buffer pools can be shared among data
sets using locally or globally shared buffer pools. There are four types of
resource pools management, called modes, according to the technique used to
manage them:

� Non-Shared Resource (NSR)
� Local Shared Resource (LSR)
� Global Shared Resource (GSR)
� Record Level Shared (RLS)

Those modes are not an attribute of a cluster, but an access option as interpreted
by the Open routine. The same cluster can be opened in NSR by a task and in
LSR by another task, or the same task can open a cluster initially as LSR and
later as NSR. You see details about each one in this chapter, except for RLS. The
exploiter of RLS is mainly CICS.

Buffers are acquired dynamically usually when the data set is opened. However
with LSR/GSR they are acquired by the application program before the Open
through the BLDVRP macro. Also they can be allocated after the Open through
the Dynamic String Addition function. The amount of space for buffers is based
on parameters in effect when the program opens the data set.

One of the major sources for determining how much space should be allocated in
a buffer pool is the Access Control Block (ACB). The system obtains buffer pool
information for VSAM data sets as follows:

� DD statements overrides SMS data class information.

� SMS data class

� The program’s ACB

� The catalog entry

� For LSR buffering, the BUFND, BUFNI, BUFFERSPACE and STRNO
parameters do not apply and cannot be overridden by JCL.

Table 2-3 has the parameters that influence buffer pool allocation.

Table 2-3 Parameters affecting buffer allocation

Source Parameter

DD Statement BUFSP, BUFND, BUFNI, and ACCBIAS
 Chapter 2. Performance 65

You can see how specifications in the MACRF, ACB’s parameter, affects buffering
and data set processing:

� Buffering management: NUB for management of I/O buffers to be done by
VSAM or UBF when management of I/O buffers is left up to the user, or a
VSAM exploiter as DB2. NUB is the default value.

� VSAM buffering modes to be used: NSR (default), LSR, GSR or RLS. These
modes assigning buffers to strings, so the number of strings also affects the
buffering

� The manner in which the records are intended to be accessed: Direct (DIR),
sequential (SEQ), skip sequential (SKP).

� Type of argument used to access records: By key (KEY option), by RBA (ADR
option), by RRN, or access is to the entire contents of a control interval rather
than to an individual data record (CNV). KEY is the default.

� What kind of processing is done in the data set: Input (IN, default) or output
(OUT); this is just an intention.

� How writes are to be managed: defer writes (DFR) or not (NDF). For details
about deferring writes; refer to “Deferring write requests” on page 80.

� Using LSR, how VSAM deals with conflict for an exclusive control in buffers:
VSAM defers the request until the resource becomes available (LEW, default)
or VSAM returns the exclusive control return code X’14’ to the application
program (NLW). The application program is then able to determine the next
action.

� Insert record strategy: Split CIs and CAs at the insert point (SIS) or at the
midpoint (NIS, default) when doing direct PUTs.

In MACRF at ACB, you code the types of access you intend to use during the
processing. They are used mainly for buffering management and at open time. To
process the data set, you use request parameter lists (RPL), where you specify
only the processing options appropriate to that particular request.

SMS data class (ACDS) RECORD ACCESS BIAS (ACCBIAS)

Program’s ACB MACRF=(IN|OUT, SEQ|SKP, DIR)

STRNO=n, BUFSP=n, BUFND=n,
BUFNI=n (1)

SHRPOOL=n (2)

The catalog entry for the data set BUFFERSPACE

Note: (1) Applies only to NSR.
(2) Only for LSR/GSR, connect the ACB to an existent resource pool
66 VSAM Demystified

If you open a data set whose ACB includes MACRF=(SEQ,DIR), buffers are
allocated according to the rules for sequential processing, NSR buffering
management.

BUFFERSPACE, BUFSP, BUFND, BUFNI affects buffering
The BUFFERSPACE value in the catalog entry for the data set is the minimum
amount of buffer space while the value assigned to BUFSP, in JCL or ACB, is the
maximum amount of buffer space. The BUFFERSPACE value applies to the
whole cluster. Additional buffer space can be assigned to any data set by:

� Modifying the data set's BUFFERSPACE value

� Specifying a larger BUFSP value with the AMP parameter in the data set's DD
statement

If you do not specify BUFSP, the amount of virtual storage used for buffers is the
largest of these values:

� The amount specified in the catalog (BUFFERSPACE)

� The amount determined from BUFND and BUFNI

� The minimum storage required to process the data set with its specified
accessing options, as sequential, direct

The BUFSP value takes precedence over BUFNI and BUFND as follows:

� If the number of buffers specified in the BUFND and BUFNI subparameters
exceed the virtual storage specified in the BUFSP space, the number of
buffers is decreased to fit in the BUFSP space as follows:

– If the ACB indicates direct access only, first the number of data buffers is
decreased until it reaches the BUFSP value, but it never becomes less
than the minimum required. If the BUFSP value is not reached, then the
number of index buffers is decreased until BUFSP is reached.

– For sequential access, BUFNI is decreased to reach BUFSP up to the
minimum plus one. If not reached, BUFND is decreased. When the
minimum is reached, but BUFSP is not reached, than one buffer is
subtracted from the number of index buffers.

� If BUFSP specifies more space than is required by BUFND and BUFNI, the
number of buffers is increased to fill the BUFSP space as follows:

– For direct access only, additional index buffers are allocated.

– For sequential access, one additional index is allocated and as many data
buffers as possible are allocated.

If BUFSP is specified and the amount is smaller than the minimum amount of
storage required to process the data set, VSAM cannot open the data set.
 Chapter 2. Performance 67

When processing a data set using a path, the number of needed buffers
increase, since buffers are needed for the alternate index, the base cluster, and
any alternate indexes in the upgrade set.

When a base cluster is opened for processing with its alternate index, the
BUFSP, BUFND, BUFNI, and STRNO parameters apply only to the path's
alternate index. The minimum number of buffers are allocated to the base cluster
unless the cluster's BUFFERSPACE value (specified in the DEFINE command)
or BSTRNO value (specified in the ACB macro) allows for more buffers. VSAM
assumes direct processing, and extra buffers are allocated between data and
index components accordingly.

The default for the number of VSAM allocation buffers is as follows:

� For the index component: BUFNI=STRNO
� For the data buffers: BUFND=STRNO+1

One of the data buffers (BUFND) is used only for formatting CAs and splitting CIs
and CAs. Only data buffers are needed for ESDS, RRDS, or LDS.

This default is also the minimum number of buffers required by VSAM.

Recommendations
Do not specify BUFSP or BUFFERSPACE, take the default value. This avoids
mistakes in calculation leading to different results from those expected. For NSR
use SMB and for LSR it is an exploiter decision.

2.6.14 Buffering techniques
Here is a look at various buffering techniques.

Non-shared resources (NSR)
Non-shared resources (NSR) is the default VSAM buffering technique. It has the
following characteristics:

� The buffers are not shared among VSAM data sets.

� The buffers are located in the private area.

� It is suited for sequential processing, because the buffers are managed via a
sequential algorithm:

– For sequential processing, there is look-ahead (time permitting CIs not yet
requested are brought to buffer pools), and CIs in the buffer pool are not
managed by LRU (meaning after use by the application program, they are
strong candidates to leave the buffer pool).
68 VSAM Demystified

– For direct processing, there is no look-ahead (which is good), but CIs are
not managed by LRU (which is bad).

� It is used by high level languages.

� The resource pool (buffer pool plus control blocks) is built automatically by
OPEN accordingly to BUFND, BUFNI, BUFFERSPACE, BUFSPC.

� NSR has specific properties when assigning buffers to strings (or place
holders).

– Each string has its own buffer for the index sequence set component.
Additional index buffers provided (allowed by the buffer parameters) are
used to cache index set records, shared among strings

– Each string has its own buffer for the data component. If additional data
buffers are provided, they are for:

• Sequential reads and writes
• CA splits
• Spanned records

– There is also a buffer for insert records is used only along CI splits.

� It dynamically extends the number of strings as they are needed by
concurrent requests for the ACB.

� For subtask sharing, when a CI is not available for the type of task processing
requested, VSAM under NSR buffering has a proper way of managing the
contention. For details, refer to 2.6.10, “Share options” on page 58.

Figure 2-5 shows how NSR buffers are constructed.
 Chapter 2. Performance 69

Figure 2-5 NSR buffering

NSR with sequential access
NSR is best used for applications that use sequential or skip sequential as their
primary access mode.

At initial buffer pool loading for reads on the behalf of a string, VSAM NSR loads
the buffers using just one channel program with chained CCWs. The number of
CIs in the channel program is equal to the number string’s assigned buffer plus
all additional buffers to a maximum of CIs/CA, since I/Os are scheduled on CA
boundaries.

When another string, at the same time, needs buffers, VSAM uses its assigned
buffer and the remaining buffers to a maximum of CIs/CA, and so forth. So,
having more buffers than CI/CA plus one is useful only when having more than
one string. When a string finishes using its buffers (processed by the application
program associated with the string), additional buffers are available to other
strings.

For overlap between CPU and I/O after initial buffer pool load:

� For sequential reads, once one-half of the buffers is being processed by the
application program, an I/O operation is scheduled for this half. This continues
until a CA boundary is encountered and the application must wait until the last

Additional index buffers (BUFNI-STRNO)
used to cache index set records
shared among strings

Additional data buffers (BUFND-(STRNO+1))
sequential READS/WRITES
CA splits
spanned records

VSAM NSR
User ACB

MACRF=
(NSR,NUB)

STRNO=2

PLH

BUFND=4
Insert Buffer

Buffer 2

Buffer 1

Buffer 3

BUFNI=3
Buffer 1
Buffer 2
Buffer 3

PLH
70 VSAM Demystified

I/O to the CA is done before proceeding to the next CA. The I/O operations
are always scheduled within CA boundaries.

� For sequential writes, once one-half of the buffers are filled by the application
program with logical records, an I/O operation is scheduled for this half. Then
for sequential PUT processing, VSAM NSR does not immediately write the
updated CI from the buffer unless a CI split is required. VSAM saves I/O
operations by deferring sequential writes. For details about deferred write
(sequential and direct), refer to “Deferring write requests” on page 80.

When you are accessing data sequentially, you can increase performance by
increasing the number of data buffers, up to a certain limit. When there are
multiple data buffers, VSAM uses a read-ahead function to read the next data
control intervals into buffers as buffers become available as described
above.Table 2-4 shows results of tests varying the number of buffers.

Table 2-4 NSR: Read sequential varying the number of buffers.

As more buffers are used, the number of Execution Channel Program (EXCPs) is
reduced. This means there are fewer I/O interrupts. That is why SRB time

Data
buffers

Index
buffers

EXCPs Device
connect
time

SRB
time

TCB
time

Elapsed
time

Default=2 Default=1 167828 23.50 2.12 7.52 120

10 1 33568 14.48 0.53 3.99 36

30 1 11577 11.82 0.26 3.44 22

50 1 6948 11.40 0.21 3.35 19

50 2 6948 11.40 0.21 3.37 19

90 1 4633 11.26 0.18 3.44 18

181 1 3476 11.15 0.19 3.86 14

181 3 3476 11.19 0.19 3.91 19

10000 1 3476 11.16 0.19 3.89 19

SMB 01 Stripe 4633 15.75 0.23 3.45 22

SMB - 02 Stripes 7580 17.11 0.17 3.61 15

SMB - 04 Stripes 14073 19.3 0.17 3.65 11

SMB 08 Stripes 27061 24.30 0.17 3.77 10

Note: All times are in seconds
 Chapter 2. Performance 71

consumption drops so much compared with TCB time. For a discussion about
what is a VSAM EXCP in numerical values, refer to Appendix B, “Miscellaneous
performance items” on page 395. With VSAM, the number of EXCPs is equal to
the number of SSCH instructions, that is the number of I/O operations, and not
the number of transferred CIs or transferred physical blocks.

� The TCB time drops due to decrease in I/O preparation. After the optimum
point, the TCB time increase due to excessive buffering management
processing. Remember that our program is just a read and forget, so all the
TCB time is consumed in the I/O process. We recommend you read the in
section “Our test environment” on page 396, for a better understanding of the
test results shown in this book.

With SHAREOPTIONS 4, buffers are refreshed at each request. Also, the
read-ahead (a look-ahead synonym) function has no effect and defer write is not
used. Therefore, for SHAREOPTIONS 4, keeping data buffers at a minimum can
actually improve performance.

The POINT macro does not cause read-ahead processing unless RPL
OPTCD=SEQ is specified. POINT positions the data set for subsequent
sequential retrieval.

Having only one index I/O buffer per string does not hinder performance in a read
sequential access because to access a logical record, VSAM gets to the next
index sequence set and uses it for the complete data CA. At end of the CA by
using the horizontal pointers, rather than the vertical pointers in the index set, the
next index sequence set CI is retrieved. Extra index buffers have little effect
during sequential processing. You can see that in Table 2-4.

When reading sequential, buffers are used to balance the ability of the
application to process data with the capacity of the storage device to deliver the
data to the application. One of the factors, that affects the amount of data CI
buffers needed is the number of logical records per data CI, and how heavy is its
processing. In a data CI with many records, the read data buffers are saturated
before a data CI with few records. Saturated means you do not get better
performance by increasing the number of buffers. In this case the CPU
processing become the slower factor.

By specifying enough data buffers, you can access the same amount of data per
I/O operation with small data CIs as with large data CIs.

Table 2-4 contains the results from our lab tests. Remember that, in our lab tests,
the data set record processing is minimal (very I/O-bound). Also notice that we
did not run in a controlled environment, so the elapsed time value can vary
according to priority and system workload. The numeric values are total and not
an average per I/O operation.
72 VSAM Demystified

If you experience a sequential performance problem waiting for input from the
device, you should specify more data buffers to improve your job's run time. More
data buffers allow you to do more read-ahead processing and less I/O operation
for the same amount of data, which decreases the disconnect time.

If your data set is SMS managed, NSR utilizes extended format, therefore you do
not need to worry about how many buffers to specify for the index or data
component. This means that you can take advantage of system managed
buffering. For details, refer to “System managed buffering (SMB)” on page 82.

Buffering in NSR initial load mode
Initial load mode occurs when you load your data sequentially in a VSAM data
set which has a High Used RBA (HURBA) equal to zero. Initial Load uses a NSR
buffering option.

Pay attention to performance aspects of using RECOVERY or SPEED attributes,
Refer to 2.6.11, “Initial load option” on page 59.

There is a difference with index buffers when you compare reading and initial
loading (or extending) sequentially a VSAM KSDS cluster. In the first case VSAM
never refers to the index set, then there is no need to set aside buffers for such
index CIs. However, along Initial loads the index set CIs are built, then there is a
little gain in performance if you provide some buffering for them.

With extended format data sets and SPEED (writing each CA with just one I/O
pass) you can get much better performance using SMB. For details, refer to
“System managed buffering (SMB)” on page 82.

Table 2-5 shows the results of loading an empty data set, with 2,000,000 records,
using IDCAMS REPRO. The best result is obtained when:

Data buffers = 181 = CIs/CA + 1

Index Buffers = 3 (the number of index levels after data set loading)

Table 2-5 NSR - Initial Load mode varying the number of buffers

Data
buffers

Index
buffers

Extended
Format /
stripes

EXCPs Device
connect
time (sec)

CPU
Time
(sec)

Elapsed
time
(sec)

Default Default No / 1 27856 41.2 8.65 68

90 Default Yes / 1 13970 24.9 8.08 41

181 Default Yes / 1 13969 24.5 8.08 42

181 3 Yes / 1 12810 24.6 8.08 44
 Chapter 2. Performance 73

NSR with direct access
NSR is not intended for direct or random access. However, many of your
applications may use NSR for direct processing because it is simple. In this topic
we look at how NSR works for direct access. Remember that today you have
solutions available to avoid NSR direct processing without changing your code:
system managed buffering, and batch local shared resources. We cover their
functions later in this chapter.

In direct access, records are randomly accessed by key, RBA or RRN depending
on the data set organization. Increasing data buffers do not boost performance,
because VSAM NSR does not implement an LRU algorithm to manage the buffer
pool.

Two good aspects of NSR read direct processing are:

� Does not use look-ahead buffers
� Only reads one CI per GET request

For direct output processing (PUT for update), VSAM defers write only when
OPTCD=NSP option is specified in the RPL macro; otherwise, VSAM
immediately writes the updated CI.

Within a NSR buffer pool, data and index sequence set buffers are not shared
among strings, refer to “Non-shared resources (NSR)” on page 68. Each string is
associated with one request parameter list (RPL). For example, when an
application uses an RPL to issue a direct GET for a record with a key of 1234
using NSR, VSAM manages buffers as follows:

1. VSAM locates the correct CI, though a top-down search through the index
set.

2. VSAM then reads the data CI into storage and gives the user the requested
record.

360 Default Yes / 1 13969 25.5 8.07 44

10000 3 Yes / 1 13971 24.3 8.06 42

SMB SMB yes / 1 12813 28.4 8.05 48

SMB SMB yes / 2 14153 28.6 8.18 30

SMB SMB yes / 4 11991 20.2 8.2 28

SMB SMB yes / 8 22815 34 8.24 22

Data
buffers

Index
buffers

Extended
Format /
stripes

EXCPs Device
connect
time (sec)

CPU
Time
(sec)

Elapsed
time
(sec)
74 VSAM Demystified

3. If the user then issues another direct GET for a record with a key of 6789,
which is in a different CI from record 1234, the same data buffer gets used for
this request, and the CI containing 6789 overlays the CI containing 1234.

4. If the user issues another direct GET for a record with key 1235 (which is in
the same CI as 1234), that CI must be read in again because the intervening
GET for 6789 causes the previous buffer contents to be lost.

This problem cannot be solved by using multiple strings. If, for example, the
requests for 1234, 6789, and 1235 use three different RPLs, both CIs are in
storage when the request for 1235 occurs, but VSAM looks only in the buffer
assigned to the string related to RPL requesting 1235 and does not look in
another string's buffers to satisfy the request. The CI has be read in again
anyway.

This NSR characteristic leads to performance complaints in cases where the
processing is random, but the same CI is requested multiple times (re-visiting)
with intervening requests to other CIs.

When the number of I/O buffers provided for index records is greater than the
number of strings, the surplus is shared among the strings:

� One buffer is used for the highest-level index record.

� Additional buffers are used, as required, for other index set index records, as
shown in Figure 2-5 on page 70.

For a KSDS or VRRDS, with NSR direct access, you should provide at least
enough index buffers. It needs to be at least to the value of the STRNO
parameter of the ACB plus one, if you want VSAM to always keep the
highest-level index record always resident. You can increase performance by
going beyond such number. Unused index buffers do not degrade performance.
Direct processing always requires a top-down search through the index.

Then, for optimum performance, the number of index buffers should at least
equal the number of high-level index set CIs plus one per string. This makes the
entire high-level index set and one sequence set CI per string in virtual storage.
Table 2-6 shows how adding index buffers improves performance. The elapsed
time can vary according to the system workload. Note that additional index
buffers are not use for more than one sequence set buffer per string.

VSAM NSR reads index buffers one at a time (per I/O operation). Index buffers
are loaded when the index is referred to. When many index buffers are provided,
index buffers are not reused for another index CI, until a requested index CI is not
in storage.

VSAM NSR keeps as many index set records as the buffer space allows in virtual
storage. Ideally, the index would be small enough to allow the entire index set to
 Chapter 2. Performance 75

remain in virtual storage. Then, you should be aware of how index I/O buffers are
used so you can determine how many to provide.

Many data buffers do not increase performance, because only one data buffer is
used for each access, as you can see in Table 2-6. The elapsed time can vary
according to the system workload.

Table 2-6 NSR buffering with direct access; STRNO=1

If your job is having performance problems randomly accessing VSAM data sets
in NSR mode, you can improve performance with no changes in your
applications, as follows:

� If your data set is SMS managed, has extended format, and your installation
has DFSMS V1R4 or later, you can use system managed buffering. For
details, refer to “System managed buffering (SMB)” on page 82.

� If the above conditions are not met, you can use BLSR. For details, refer to
“Batch local shared resources (BLSR)” on page 92.

Refer to “Sample programs extract from SMF record type 64” on page 367 for
information that can help you find data sets which are candidates to use SMB or
BSLR. Both offer real gains for direct access.

If your data set meets both requirements for SMB and BLSR, use SMB, for better
results.

Recommendations
For NSR, we recommend:

� For sequential processing, use SMB to get an optimum buffering, or:

BUFNI = Number of levels

BUFND = Number of CI/CA plus one

Data Buffers Index
Buffers

EXCPs Device
Connect time
(sec)

CPU time
(sec)

Elapsed
time
(sec)

Default Default 794950 103.34 31.76 506

90 1 794950 103.34 32.42 506

Default 3 505171 76.67 21.11 326

Default 5 445160 62.32 18.87 291

Default 50 368823 51.64 16.36 242

Default 1200 368823 51.64 17.13 243
76 VSAM Demystified

Additional data buffers, when STRNO higher than one

� For direct access, use SMB or BLSR to convert to LRU algorithm, or in a
worst case keep NSR with:

BUFNI = STRNO plus number of levels

BUFND = Let the default value (STRNO plus one)

NSR with mixed access
The best advice here is still to suggest SMB or BLSR. If you need to keep NSR
then, for mixed access situations (sequential and direct), you can improve
performance by doing the following:

� Increase the number of index component buffers to the number of index
levels, to favor direct access. Table 2-6 shows how the number of index
component buffers can improve performance for direct access.

� Increase the number of data component buffers, to favor sequential access.
Table 2-4 on page 71 shows how this can improve performance, based on
tests in our lab.

Local Shared Resources (LSR)
This is another mode of managing VSAM buffers. In this mode, the buffers in a
LSR pool:

� Are shared among VSAM data sets accessed by tasks in the same address
space. It is a centralized way for buffer management. Instead of having
individual buffer pools (some very much utilized, some not), we have a large
one shared by several VSAM data sets, improving the utilization of the
resource.

� Are explicitly constructed through BLDVRP macro, before the OPEN for the
first data set that uses it.

� Are explicitly deleted by the DLTVRP macro.

� Are located in the private area and ESO hiperspace (if specified in BLDVRP
macro).

� Its CIs are replaced based on the least recently used (LRU) algorithm, which
is designed for random processing.

� Have no look-ahead, even for sequential processing.

� Usually implemented only by CICS.

� For subtask sharing, when a CI is not available (locked) to the task for the
type of processing requested, VSAM under LSR and GSR buffering has a
proper way of managing the contention. For details, refer to 2.6.10, “Share
options” on page 58.
 Chapter 2. Performance 77

� Applications using LSR can invalidate BP contents through MRKBFR macro
and force them to be written immediately through WRTBFR macro.

LSR relieves virtual storage constraint and reduces I/O for applications that
access the same data multiple times. This technique is best used for truly
random access, with multiple references to the same data. Subsequent access
to data does not have to go through DASD.

With LSR (and GSR), the number and size of buffers are specified in BLDVRP
macro (see Figure 2-6) and are not overridden by ACB or JCL. The buffer pool is
identified by a number and a data set is connected to it through the ACB macro,
where the buffer pool ID is specified. After all data sets using a resource pool are
closed, the resource pool can be delete issuing the DLVRP (delete VSAM
resource pool) macro. For more details about macros, refer to DFSMS/MVS
Macro Instructions for Data Sets, SC26-4913.

Figure 2-6 VSAM shared resources (LSR/GSR)

Online transaction program (OLTP) applications like CICS and IMS are the
biggest users of LSR shared resources because they typically need to have
hundreds of data sets open in one address space at any given time. Having an
individual buffer pool for each data set would be a waste of virtual storage. With

Buffers and I/O related control blocks
associated with a pool (BLDVRP)
Multiple data sets share pooled resources

Buffers and I/O related
control blocks

User ACB
INDEX

Data

MACRF=
(NSR,NUB)

User ACB
INDEX

Data

MACRF=
(NSR,NUB)

User ACB

INDEX

Data

MACRF=
(NSR,NUB)
78 VSAM Demystified

CICS and IMS, the BLDVRP is issued by them, not directly by the user
application. Information for building the shared buffer pool is specified in the
product FCT table (for CICS). Refer to the product manuals.

With LSR and GSR, writes can be deferred until VSAM needs a buffer to satisfy a
GET request. Deferring writes saves I/O requests in cases where subsequent
requests can be satisfied by the data already in the buffer pool. For more details,
refer to “Deferring write requests” on page 80.

The search for a CI in the buffer pool is not affected by the pool size once the
search is by hashing, so there is no overhead. Also, with LSR buffering, your
application can use hiperspace as a second level of buffering. If you intend to
build an application using LSR buffering techniques:

� Note that LSR is suited for direct access; for sequential access, use NSR.

� Build resource pools before any open to the data sets that use them.

� Build a separate resource pool for indexes to avoid index data being flushed
by data being read.

� Use defer write if possible.

For details on how to build an LSR pool, refer to DFSMS/MVS Using Data Sets,
SC26-4922.

LSR with direct access
LSR buffering mode is designed for direct access. If your applications use NSR
buffering and direct access, and you are having performance problems, you can
take advantage of LSR buffering techniques using SMB or BLSR.

Refer to “System managed buffering (SMB)” on page 82, and “Batch local shared
resources (BLSR)” on page 92.

LSR with sequential access
As we said, LSR buffering mode is designed for random access, not sequential. If
you are relying on sequential look-ahead (also called read-ahead) for good
performance LSR buffering could degrade, rather than improve performance.
LSR does not do read-ahead. Your sequential request is read in just one data CI
per I/O operation. You should use NSR buffering, where VSAM can read up to a
CA's worth of data CIs in a single I/O, conditions permitting. For details about
NSR, refer to “NSR with sequential access” on page 70.
 Chapter 2. Performance 79

Recommendations
If you intend for your batch application to use the LSR buffering technique, we
recommend you:

1. Write the application using the default buffering NSR. It is easier and you can
use a high level language, such as COBOL.

2. Use SMB to convert to LSR when processing or BLSR if there is no SMS.

Global Shared Resources (GSR)
GSR is similar to LSR buffering technique. The GSR characteristics that differ
from LSR are:

� The buffer pool is shared among VSAM data sets accessed by tasks in
multiple address spaces in the same system image.

� Buffers are located in CSA.

� The code using this must be in supervisor state.

� Buffers cannot use hiperspace.

� The separate index resource pools are not supported for GSR.

With these differences in mind, refer to “Local Shared Resources (LSR)” on
page 77, for details on how GSR buffering technique works.

GSR is not used by any of the main VSAM exploiters.

The disadvantages of GSR are:

� Use of common area, a limited resource in the system

� The address space that opened the data set for the first time must remain
started to allow acquire new space to the data set.

� The allowed number of resource pools is one by storage key number (0-7).

� All VSAM requests related to the global resource pool may be issued only by
a program in supervisor state with the same protection key as the resource
pool.

� Workload balancing: you cannot distribute the workload between system
images and keep a single control block structure.

Recommendations
Do not use GSR mode for buffering, use RLS.

Deferring write requests
Specify defer write, if possible in the ACB. With defer write, VSAM uses the buffer
pool in a store in mode. That is, the updates are not propagated immediately to
80 VSAM Demystified

DASD. They are deferred until the WRTBFR macro is issued or until VSAM
needs a buffer to satisfy a GET request.

The performance advantages of deferring writes are these:

� If the same record is updated n times and is then written asynchronously to
DASD, you save n-1 I/O operations. It is clear that, if there are no further
updates, there are no saves.

� The application issuing the write does not wait for the I/O operation.

The negative aspect of deferring writes is that VSAM does not have a log (at
present). If the system fails before the buffer destage, you lose some updates in
your data set. So it is up to you to make the decision based on the type of data
you are processing.

The Defer Write option is only valid for LSR and GSR. The defer write option is
bypassed in LSR and GSR if SHAREOPTIONS 4 is specified. Refer to 4.3,
“Sharing VSAM data sets” on page 212.

When NSR defer write is used, with the exception of SHAREOPTIONS 4, the
buffers are immediately refreshed.

You specify that writes are to be deferred by coding MACRF=DFR in the ACB,
along with MACRF=LSR or GSR:

ACB MACRF=({LSR|GSR},{DFR| NDF},...),...

In RLS mode, deferred writes are ignored and direct request modified buffers are
immediately written to disk and the coupling facility.

Locating VSAM buffers above 16 MB
The default VSAM allocation for a resource pool is below 16 MB line. The
exception is SMB, where the default is above 16 MB line. The location of the
buffers and I/O control blocks can be controlled using:

� In an assembler application program:

– For NSR buffering, in the RMODE31 keyword in ACB
– For LSR/GSR buffering, in BLDVRP macro

� In the JCL, through RMODE31 parameter on the DD statement

The values you may specify for RMODE31 follow:

� ALL is used to allocate I/O relate control blocks and buffers above 16 MB.
IDCAMS does not accept this value because it only accesses control blocks
below the 16 MB line.

� BUFF is used only to allocate buffers above 16 MB.
 Chapter 2. Performance 81

� CB is used only for I/O relate control blocks above 16 M. IDCAMS does not
accept this value because it only accesses control blocks below the 16 M line

� NONE is the default. VSAM allocates I/O related control blocks and buffers
below 16 M.

With the flexibility of JCL, you can avoid the necessity of changing an existing
application. But be aware that programs with AMODE=24 can abend with S0C4
when locate mode is used and RMODE31=BUFF is specified.

Locate mode is used when OPTCD=LOC is specified in the RPL, and indicates
to VSAM to return to the application the address of the record, which is located in
the buffer. Using locate mode, programs addressing 24 bits cannot access data
above 16 MB (addressing 31 bits).

There is also a move mode, where VSAM moves your logical record from the
buffer to a user area your program specifies.

COBOL for OS/390 always:

� Uses MVE mode; VSAM moves the record to an area whose address is
indicated in the RPL, built by COBOL.

� Requires VSAM buffers above 16 MB.

You can relieve the storage constraint below 16 MB for application programs
using VSAM data sets by specifying RMODE31 in the AMP parameter. You can
increase the number of buffers with no effect on virtual storage below 16 MB. Do
not forget to specify enough private area above. Refer to 2.6.12, “Region size” on
page 61.

Recommendation
We recommend you use VSAM buffers above 16 MB.

System managed buffering (SMB)
SMB was introduced in DFSMS V1R4 and is available to all VSAM data sets
open for NSR processing. SMB enables VSAM to determine the optimum
number of index and data buffers, as well as the type of buffer management: LSR
(LRU, lots of index buffers, lost of data buffers containing 20% of data, no
look-ahead) or NSR (discard the ones already processed, just one index buffer,
look-ahead).

SMB allocates, at Open time, the optimum number of data and index buffers
based on the type of access declared in the ACB’s MACRF parameter. Usually
SMB allocates much more buffers than without SMB. Then, the installation
should allow a larger virtual storage, as making Region equal to zero. If the
82 VSAM Demystified

Region is not enough, you may receive the following message: IEC161I
001(8,36).

Performance improvements can be dramatic with random access, particularly if
you have little buffering, due to defaults, because SMB enlarges the number of
buffers and switches from NSR mode to LSR mode as bufferpool managing is
concerned. This can be seen in Table 2-7 on page 86.

When processing a VSAM data set, using SMB, and SMB switches to LSR
mode, you can receive the message IEC161I 001(8,36)-087. It is issued due an
error building the VSAM resource pool (BLDVRP macro) and indicates that there
was not enough virtual storage to satisfy the request done by SMB. SMB gets the
available storage and processing goes on. To get optimum SMB buffering, you
should provide enough virtual storage. Refer to 2.6.12, “Region size” on page 61.
You can relieve the use of storage below 16 MB by specifying that VSAM
allocates buffers above16 MB. Refer to “Locating VSAM buffers above 16 MB” on
page 81.

SMB is available under the following conditions:

� The data set must be in extended format. To be in extended format, the data
set must be system managed (SMS) and use a data class defined with
DSNTYPE=EXT. For details about extended format; refer to 1.9, “Extended
format data set” on page 28.

� In the application program, ACB must be NSR and MACRF keyword cannot
contain:

– ICI data list: Improved control interval processing.

– UBF: Management of I/O buffers left up to the VSAM user, as in DB2.

– For releases prior to z/OS 1.3 DFSMS, processing the data set through
the alternate index of the path specified in the DDname is not supported.

When the conditions above are not satisfied, the job does not abend, but the
SMB services are not used and no messages are issued.

You can invoke SMB services through one of the following methods:

� Using a data class defined with RECORD_ACCESS_BIAS
� Specifying ACCBIAS in the AMP parameter of JCL DD statement

The order of precedence for specifying values are shown in the SOURCE column
in Table 2-3 on page 65.

Both parameters can be used to specify access bias with a subparameter
ACCBIAS, where you specify the type of buffering management technique. You
can specify ACCBIAS equal to one of the following values:
 Chapter 2. Performance 83

� SYSTEM: Let the system determine the buffering technique, based on:

– The ACB’s MACRF type of access intention: sequential, direct, or skip
sequential, or a combination, and

– The Storage Class specifications: read or write bias for sequential direct
access and MSR.

One of the four techniques is used (DO, DW, SO or SW). Refer to Table 2-8
on page 86. Those are explained in sequence.

The MACRF type of access is just an intention. The real type of access is
declared per I/O operation in the RPL If you know in advance that the MACRF
is not correct (by talking to the programmer, for example). You must give a
hand by telling it the real type of access.

Also in MACRF all the accessing types maybe specified, not helping SMB in
discovering the best buffer management method. This situation also happens
in COBOL when ACCESS MODE IS DYNAMIC is used. It means all of them
(direct, sequential and skip sequential) are declared in the MACRF. To help
SMB there are the following parameters:

– DO: SMB optimizes buffers management to direct access. SMB changes
the buffering management to LSR and allocates the adequate number of
buffers for direct processing.

– DW: To indicate to SMB that the processing is mixed direct and sequential,
but with dominance of direct access. So, more index buffers are allocated
to support direct processing but some buffers will be reserved for data to
help any sequential processing that might occur. The buffering
management technique is changed to LSR.

– SO: Indicates to SMB to optimize buffer allocations for sequential
processing. More data buffers (less index buffers) are allocated to support
sequential access.

– SW: Specifies mixed processing, but with dominance of sequential
access. SMB optimizes buffer handling for sequential processing
allocating more data buffers, but buffers will be reserved for index to help
direct access. SMB is faster than NSR for sequential process, as indicated
in Table 2-9 on page 87.

� USER: Bypass SMB. This is the default if you code no specification for the
ACCBIAS subparameter. This default is not used when the data class
specifies RECORD_ACCESS_BIAS.

For direct optimization (DO), you can use the following DD AMP parameters (not
present in the data class) to tell the LSR buffer manager how to handle the
processing of the buffers:
84 VSAM Demystified

� SMBVSP: Specifies the amount of virtual storage to obtain for buffers when
opening the data set. Used to override the default buffer space to be obtained,
which is calculated assuming that 20% of the data accounts for 80% of the
accesses. The buffer space acquired is split across two LSR pools: one for
the index and one for the data. The specification can be done in either of two
formats:

– SMBVSP=nnK
– SMBVSP=nnM

� SMBHWT: Used to allocate hiperspace buffers based on a multiple of the
number of address space virtual buffers that have been allocated. It can be an
integer from 0 to 99. The value specified is not a direct multiple of the number
of virtual buffers that are allocated to the resource pool, but act as a weighting
factor for the number of hiperspace buffers to be established. The hiperspace
size buffer will be a multiple of 4K. These buffers may be allocated for the
base data component of the sphere. If the CI size of the data component is
not a multiple of 4K, both virtual space and hiperspace is wasted. The default
is 0 and means that hiperspace is not used.

� SMBDFR: Allows the user to specify whether writing the data from a buffer to
DASD can be deferred until the buffer is required for another request or the
data set is closed. By the way, a CLOSE macro invoked with TYPE=T
(temporary, does not need an OPEN to restart processing) option does not
write the buffers to DASD when LSR processing is used for direct
optimization. The format is:

SMBDFR=Y or N

Y is the default for SHAREOPTIONS (1,3) and (2,3)

N is the default for SHAREOPTIONS (3,3), (4,3) and (x,4)

Table 2-7 shows the benefits of using SMB, compared with the use of BLSR,
refer to “Batch local shared resources (BLSR)” on page 92 and buffering default.
When we ran our test, we had 61 CA splits. Some CPU time was due to
managing these splits; allocating extents, and data set catalog entry update. For
considerations on CA and CI splits, see 1.5.12, “Splits” on page 15.

If you specify RECORD_ACCESS_BIAS=SYSTEM in the data class, you should:

� Rely on the MACRF accessing options (in MACRF we trust)
� Make sure that MACFR only has one access type
� Ensure that storage class bias parameters is correctly set

You can also see that for extended format data sets, you can get performance
enhancements, even with default buffering. In our lab tests (refer to Table 2-7),
the number of EXCPs, CPU time, and connect time is less than non-extended
 Chapter 2. Performance 85

format data sets. For details on why this happens, see “Use of extended format”
on page 134.

Table 2-7 Direct access: benefits of using SMB: Updates and insertions

When SYSTEM is specified, the parameters used to determine how buffers are
allocated and managed are:

� ACB’s MACRF values of SEQ, DIR, and SKP
� The storage class values for BIAS and MSR

Table 2-8 shows how ACB’s MACRF and storage class BIAS parameters affect
the buffer allocation and management when SYSTEM is specified.

Table 2-8 Some effects of ACB’s MACRF and storage class BIAS parameters

Table 2-9 shows the results when loading our laboratory data set using default
buffering and SMB. You can see, the results are the same using sequential
optimization (SO) or SYSTEM. For details about our lab, refer to “General lab
description” on page 396.

Ext format Buffering EXCPs connect
time (sec)

CPU time
(sec)

Elapsed
time (min)

No Default 861744 123.51 51.37 843

Yes Default 764332 120 50.32 809

No BLSR 330852 73.13 24.42 245

Yes SMB
(System)

280276 62.5 19.22 189

Gain using SMB (%) 67 50 62.5 78

ACB MACRF parameters Storage class BIAS

SEQ DIR Both None

MACRF=DIR DW DO DO DO

MACRF=SEQ (default) SO SW SO SO

MACRF=(SEQ,SKP) SO SW SW SW

MACRF=SKP DW DW DW DW

MACRF=(DIR,SEQ) or (DIR,SKP)
or (DIR,SEQ,SKP)

SW DW DW DW

Note: DO=Direct Optimized; DW=Direct Weighted; SO=Sequential Optimized;
SW = Sequential Weighted
86 VSAM Demystified

Table 2-9 Initial load mode comparing SMB with no-SMB buffering

Retry capability for Direct Optimized technique (DO)
In z/OS 1.3 DFSMS, retry capability was added to DO technique. SMB tries to:

1. Obtain storage buffers to about 20% of data set records plus to buffer the
entire index component, if the VSAM organization is keyed.

2. Reduce the numbers of buffers by 50% from the optimum amount for the data
components and retry.

3. Reduce the number of data buffers to the minimum and retry. The minimum
size is 1 MB.

4. Reduce the number of index buffers to the minimum and retry. The minimum
is the amount of virtual storage to contain the entire index set plus 20% of the
sequence set records.

If none of the retries above is successful, change to Direct Weighted (DW).

Messages related with SMB
Messages related to SMB are listed below:

� IEC161I 001(sfi)-032:

sfi is 101, 102 or BLDVRP return and reason code. For BLDVRP return
codes, refer to “Return Codes from Macros Used to Share Resources Among
Data Sets” in z/OS DFSMS Macro Instructions for Data Sets, SC26-7408.

� IEC161I 001(sfi)-033: means that SMB did not return ACCBIAS.

� IEC161I 001(sfi)-034: sfi is for CATALOG LOCATE ERROR.

SMB support for AIX
With z/OS DFSMS R1.3, VSAM data sets using alternate indexes and SMB have
a better performance. Now SMB supports data sets with alternate indexes for the
DO technique and better size the resources needed for processing with non-DO
technique.

Extended
format

Buffering EXCPs Connect
time

CPU time Elapsed
time

No NSR - Default 27856 41.2 8.65 68

Yes ACCBIAS=SO 12813 28.4 8.04 48

Yes ACCBIAS=SYSTEM 12813 28.4 8.05 48

Gain using SMB (%) 54 30 7 30

Note: All times are shown in seconds
 Chapter 2. Performance 87

Using SMB, the buffer allocation and buffering technique used depends on:

� The order in which the components are opened:

– Base Cluster

– Path Cluster

– The ACCBIAS informed by the user or detected by SMB

– Where VSAM control blocks exist, in such a case, there are already
buffers:

• When connecting to the existing structure, just add more buffers to
existing pool.

• When connecting is not possible, build new control blocks and new
buffers, using SHAREOPTIONS, to enforce the sharing rules.

During OPEN time, the decision to share a control block structure is based on
DSN and DDN sharing criteria. For sharing criteria refer to “Using a single VSAM
control block structure” on page 221.

Table 2-10 presents how SMB allocates buffers when a VSAM control block
structure exists for the components, when sharing by data set name
(MACRF=DSN).

Table 2-10 SMB: AIX support with Data Set Name Sharing (MACRF=DSN)

OPEN BASE CLUSTER:

Current
ACCBIAS

User
ACCBIAS a

COMPONENT SHARE
OPTIONS

BUFFERS

DO DO or blank All Does not
matter

Connect in the
existing structure
and LSR pool

DO Non DO Base Cluster Apply See Note b

Upgrade
AIXes c

BUFNI=# levels
BUFND=2

Non-DO DO All Apply See note b
88 VSAM Demystified

Table 2-11 SMB: AIX support with DDname Sharing (MACRF=DDN)

Non-DO Non-DO or
blank

Base Cluster Does not
matter

More BUFND and
BUFNI added to
current pool d

UPGRADE
AIXes e

Does not
matter

BUFNI=# levels
BUFND=2

OPEN PATH CLUSTER:

DO DO or blank All Does not
matter

Connect in the
existing structure
and LSR pool

DO Non DO Base Cluster Apply See note b

UPGRADE
AIXes c

Apply BUFNI=# levels
BUFND=2

Non DO DO All Apply See note b

Non DO Non-DO or
blank

Path AIX Does not
matter

More BUFND and
BUFNI added to
current pool d

UPGRADE
AIXes

Does not
matter

BUFNI=# levels
BUFND=2

a. ACCBIAS specified by the user in the DDname being opened
b. A new VSAM control block structure is used and SMB allocates buffers accord-
ing to user ACCBIAS or ACCBIAS detected by SMB.
c. When open intention for UPGRADE components is for OUTPUT
d. When SMB detects ACCBIAS=DO, SMB treats as DW.
e. For UPGRADE components, If this is the first OPEN for OUTPUT.

Table 2-11 presents how SMB allocates buffers when sharing by DDname, that is
MACRF=DDN in ACB.

OPEN BASE CLUSTER:

Current
ACCBIAS

User
ACCBIAS a

COMPONENT SHARE
OPTIONS

BUFFERS

OPEN BASE CLUSTER:

Current
ACCBIAS

User
ACCBIAS a

COMPONEN; SHAREOPTIONS BUFFERS

DO DO or blank All Does not matter Connect in the
existing structure
and LSR pool
 Chapter 2. Performance 89

DO Non DO Base Cluster Apply See Note b

Upgrade
AIXes c

Apply BUFNI=# of levels
BUFND=2

Non-DO DO All Apply See note b

Non-DO Non-DO or
blank

Base Cluster Does not matter More BUFND and
BUFNI added to
current pool d

UPGRADE
AIXes e

Does not matter BUFNI=# of levels
BUFND=2

OPEN PATH CLUSTER:

DO DO or blank All Does not matter Connect in the
existing structure
and LSR pool

DO Non DO Base Cluster Apply See note B

UPGRADE
AIXes c

Apply BUFNI=# of levels
BUFND=2

Non-DO DO All Apply See Note f

Non-DO Non-DO or
blank

Path AIX Does not matter More BUFND and
BUFNI added to
current pool d

UPGRADE c Does not matter BUFNI=# of levels
BUFND=2

a. ACCBIAS informed by the user in the DDname being opened
b. A new VSAM control block structure is used and SMB allocates buffers accord-
ing to user ACCBIAS or ACCBIAS detected by SMB.
c. When open intention for UPGRADE components is for OUTPUT
d. When SMB detects ACCBIAS=DO, SMB treats as DW.
e. For UPGRADE components, If this is the first OPEN for OUTPUT.
f. A new VSAM control block structure is used and SMB builds an LSR pool.

Table 2-12 shows how SMB allocates buffers when there is no control block
structure. This means, at the first OPEN.

OPEN BASE CLUSTER:

Current
ACCBIAS

User
ACCBIAS a

COMPONEN; SHAREOPTIONS BUFFERS
90 VSAM Demystified

Table 2-12 SMB: AIX support for DO, no VSAM control block structures

Table 2-13 shows the amount of processing per compressed read or write
operations that we found in our lab environment.

Table 2-13 SMB: AIX support for non DO

OPEN ACCBIASa COMPONENT BUFFERS

Base Cluster DO All LSR Pool

Non DO Base Cluster SMB b

Upgrade AIXes c BUFNI=# of levels
BUFND=2

Path Cluster DO All LSR Pool

Non DO Base Cluster SMB allocates buffers
for ACCBIAS=DW

Upgrade AIXes d c BUFNI=# of levels
BUFND=2

Path AIX According to
ACCBIAS or
processing intention

a. User informed or detected by SMB
b. SMB allocates buffers according to user ACCBIAS or detected by SMB.
c. When open intention is for output and is the first open
d. Add to the Path AIXes if it is defined as UPGRADE

OPEN COMPONENT BUFFERS

MACRF=DDN Base Cluster Base Cluster according to ACCBIAS or
processing intention

Upgrade AIXes BUFNI=# of levels
BUFND=2

Pathname Base Cluster SMB allocates buffers for
ACCBIAS=DW

Path AIX according to ACCBIAS or
processing intention

Upgrade AIXes
a

BUFNI=# of levels
BUFND=2
 Chapter 2. Performance 91

Batch local shared resources (BLSR)
BLSR is a subsystem that provides advantages in an application using VSAM
NSR buffering techniques to switch to LSR without changing the application
source code or link-editing the application again. Only a JCL change is required.

Your application performance will improve using BLSR when direct access is
used and the same CI is referenced more than once in the processing. Using the
BLSR subsystem with sequential access could degrade performance rather than
improve it. For information about how LSR works, see “Local Shared Resources
(LSR)” on page 77.

For mixed processing (some direct, some sequential), you may benefit from
using BLSR. If the amount of data to be processed sequentially is not very large,
you can compensate for the lack of read-ahead by using a large data CI size.

BLSR supports the VSAM data set types KSDS, ESDS, RRDS and VRRDS.
Using BSLR, you can force VSAM buffers and control blocks to be located above
16 MB without having to use hiperspace. You can also use hiperspace, and you
can restrict its use with RACF or an equivalent security software.

The BLSR subsystem has the following restrictions:

� The ACB cannot be above 16 MB. Otherwise, the system fails the OPEN
request with error message IEC190I.

MACRF=DDN Pathname Base Cluster SMB allocates buffers for
ACCBIAS=DW

Path AIX according to ACCBIAS or
processing intention

Upgrade AIXesa BUFNI=# of levels
BUFND=2

Base Cluster Base Cluster according to ACCBIAS or
processing intention

Upgrade AIXesa BUFNI=# of levels
BUFND=2

Path AIX according to ACCBIAS or
processing intention

a. When OPEN for output for the first time.

OPEN COMPONENT BUFFERS
92 VSAM Demystified

� If the application closes and then reopens the ACB without refreshing the
DDNAME, the request is bypassed, and the data set is opened using the
same options as the last time it was opened.

That is, if the data set was previously opened for LSR processing, then it is
reopened for LSR. Similarly, if the data set was not eligible for LSR processing
the first time, then it is reopened for NSR processing, even if LSR is now
applicable.

High-level languages refresh the DDNAME for each open. Consequently, the
subsystem is always called for:

� COBOL/VS programs using the ISAM interface to access VSAM data sets.

� PL/1 programs written for ISAM accessing VSAM data sets.

� Other programs using the RDJFCB macro to try to identify the file type, for
example, IDCAMS.

Before using BSLR, the subsystem must be installed. Contact your installation
system programmer, or refer to the manual MVS Batch Local Shared Resources,
GC28-1469.

When the subsystem is active, to invoke its services, add the SUBSYS
parameter to the JCL. The following example illustrates how to do this.

If, for example, the application opens the following data set for NSR processing:

//VSAMDD DD DISP=SHR,DSN=VSAMDSN

You can convert to the BLSR subsystem as follows:

1. Change the DDNAME on the previous JCL command statement, for example,
from VSAMDD to NEWBUFF:

//NEWBUFF DD DISP=SHR,DSN=VSAMDSN

2. Add the following DD statement, where the SUBSYS subsystem-name
subparameter is BLSR and the SUBSYS DDNAME subparameter is the DD
name selected in Step 1:

//VSAMDD DD SUBSYS=(BLSR,'DDNAME=NEWBUFF')

When SUBSYS is specified in JCL, the job’s INITIATOR issues the IEFSSREQ
macro, invoking BLSR subsystem services, passing the information specified in
the SUBSYS parameter.

Then, the BSLR subsystem:

1. Includes an EXIT to call BLSR at OPEN.

2. Dynamically allocates the data set to the correct DDNAME (NEWBUFF in the
example).
 Chapter 2. Performance 93

When the application opens the VSAMDD ACB, the BLSR subsystem completes the
conversion to LSR processing.

The following system parameters are not allowed with the SUBSYS parameter:

*, AMP, BURST, CHARS, COPIES, DATA, DDNAME, DYNAM, FLASH, MODIFY, QNAME, SPACE,
SYSOUT.

You must nullify any of these parameters if they are specified on a DD statement
you are overriding.

You specify the SUBSYS parameter as:

SUBSYS=(subsys-name,'DDNAME=value','subparm1=value',....,'subparmn=value')

Where:

� subsys-name is the name given to BLSR subsystem, usually, BLSR.

� DDNAME=value is the name of the DDNAME to be open by the application
program.

The following subparameters are allowed on the BLSR SUBSYS parameter:
BUFND, BUFNI, HBUFND, HBUFNI, RMODE31, STRNO, DEFERW, SHRPOOL,
BUFSD, BUFSI and MSG.

BLSR can be used with SMS and non-SMS-managed data sets.

If your data set is SMS-managed and is in extended format, you will get better
performance using SMB. For details, see “System managed buffering (SMB)” on
page 82.

We recommend:

� If possible, use SMB. The results are better, as shown in Table 2-7 on
page 86.

� If possible, locate the buffers above 16 MB.

2.6.15 Data compression
To compress means to store data in a format that requires less space than the
original data. There are quite a few methods (algorithms) to compress data, such
as:

� Character-based methods: Huffman, Run-length encoding, Ziv-Lempel
� Bit-level methods: Image data compression, IDRC (tape controllers)

Some of these methods use the concept of a dictionary, which is a mapping from
one vocabulary to another. There are two types:
94 VSAM Demystified

� Compression dictionary
� Expansion dictionary

The same method may use many dictionaries.

S/390 uses the Ziv-Lempel (ZL) method in software and hardware options.
ZL-based schemes work by entering phrases into a dictionary and then, when a
repeat occurrence of that particular phrase is found, outputting the dictionary
index instead of the phrase. Several compression algorithms are based on this
principle. They differ mainly in the manner in which they manage the dictionary,
and all of them tend to perform much better in decoding than in encoding. S/390
compression uses the ZL1 version of the ZL implementation, and the RVA family
of products uses ZL2.

Where to use compression
Compression can be executed in the processor or outbound in an I/O controller
(for example, tape). With CPU compression, you save:

� I/O buffer pool space
� Channel cycles
� Controller cache space
� Controller internal data path cycles
� Media space (disk and tape)
� Transmission line cycles (for TP)

The advantages of compressing in the controller are to save:

� Controller cache space
� Controller internal data path cycles
� Media space (disk and tape)
� CPU cycles

z/OS compression interface
The interface to data compression in z/OS is through the Compression
Management Facility (CMF), which consists of two parts.

Compression service activation
Compression service activation covers checking and setting up the required
compression environment.

It determines if the Compression Call instruction is available; if not, the
compression is done by software.It verifies if the SYS1.DBBLIB data set is
available. It contains dictionary building blocks (DBB) used for compression.
 Chapter 2. Performance 95

Compression management services (CMS)
Compression management services covers the actual process a data set goes
through when compression is requested. CMS provides and carries out the
following services used by VSAM.

VSAM Candidate data set verification
VSAM Candidate data set verification has the following requirements:

� KSDS organization only. Only data is compressed, indexes are not
compressed (AIXs are not compressed).

� SMS functions must be active and the data set must be SMS managed and in
extended format.

� Data class assigned has to specify the DSNTYPE=EXT with a required
COMPACTION=Y (blank defaults to N).

� Have a primary allocation of at least 5 MB (data component only) due to the
amount of sampling needed to develop a dictionary token. If no secondary
allocation is specified, then the primary allocation must be at least 8 MB.

� Have a minimum record length of 40 bytes (not including key length).

� CI Mode processing is not allowed.

� BCS catalog, system data sets, and temporary data sets cannot be
compressed because extended format is not supported.

For VSAM extended format and compression restrictions and incompatibilities
see DFSMS Using Data Sets, SC26-4922-01.

Dictionary selection
There are two forms of compression: generic and tailored (refer to Figure 2-7 on
page 98.)

� Generic compression:

This involves the sampling and interrogation of the compression eligible data
set by CMF. Next, a sample from the data set is taken, at load time, and
compared to the DBBs for similar content and compression efficiency. Up to
64 KB of the data set can be sampled and written before the data set starts to
be compressed. The first time a compressed format data set is written to disk,
the first bytes are written in non-compressed form.

Because the dictionary is assembled using DBBs during the sampling and
interrogation, the dictionary does not exist when the first bytes of the data set
are written. Once the dictionary is built, the data can use this dictionary to
compress the rest of the data set. Information about the mix of DBBs selected
during the sampling and interrogation process is kept in the catalog. This
96 VSAM Demystified

information enables the decompression of the data set when required but
does not require a dictionary to be stored with the data set.

� Tailored compression:

Tailored compression introduces a new form of compression for sequential
extended format data sets. By the way, VSAM data sets do not support
Tailored compression.

With tailored compression, the system attempts to derive a compression
dictionary that is tailored specifically to the initial data written to a data set.
Once a tailored dictionary is derived, it is imbedded in the compressed data
set. This technique is expected to provide improved compression ratios,
thereby reducing DASD usage and channel traffic.

Because the dictionary is tailored to the user data, significantly more data is
sampled than was required by generic compression. The process of sampling
the data and building the dictionary during creation of a new data set takes
more CPU cycles and is, therefore, most noticeable when compressing small
data sets. For larger data sets, the cost of sampling is amortized significantly.
Reuse of a tailored compressed data set saves the cost of sampling and
dictionary creation.

An installation has the option of either using the new tailored compression or
continuing to use generic DBB-based compression first introduced with
DFSMS V1R2. Tailored compression allows for more types of data to be
compressed, for example, where non-English languages are used.

Because the original generic dictionary was developed with standard
American-English scripts, files containing sequences of characters that do not
appear in the American scripts do not compress very well. The tailored
dictionary avoids this problem, as it is generated dynamically from the data
itself, for each data set.

Dynamically generating a tailored dictionary from the data itself should make
tailored compression more useful to the non-English-speaking world. Tailored
compression support does not apply to VSAM KSDSs, which can continue to
be compressed with generic DBB dictionary compression.
 Chapter 2. Performance 97

Figure 2-7 CMS dictionary selection

Forms of candidate data sets
A compression-eligible data set can exist in one of three forms, depending on the
moment:

� Dictionary selection: The data set is eligible, but its makeup is yet to be
determined. The dictionary tokens are compared with the data set contents
during interrogation and sampling. Interrogation maps bytes into alpha,
numeric, upper- or lower-case, and sampling evaluates DBB compression
efficiency.

� Mated: The data set is mated with the appropriate dictionary; this concludes
the sampling and interrogation processes.

� Rejected: A suitable dictionary match was not found during sampling and
interrogation, so compression is bypassed, or for a sequential data set, the
data set was closed before a token could be selected. Note that the data set
is in compressed format.

Compression Management Services

Write
Compressed

DBBs

Sample
Interrogate
Compare

Build

Noncompressed
Data

Data
Class
98 VSAM Demystified

There are some types of data sets that are not suitable for ZL compression,
resulting in rejection, such as these:

� Small data sets.

� Data sets in which the pattern of the data does not produce a good
compression rate, such as image data.

� Small records. Compression is performed on a logical record basis. When
logical records are very short, the cost of additional work may become
excessive compared to the reduction in size that compression achieves.

Data compression and decompression
Data compression and decompression are invoked whenever read and/or write
or get and/or put is done on a mated data set. A mated data set is one that has
acquired a suitable dictionary token through successful interrogation and
sampling processes. In other words, suitable building blocks have been found
and selected from the DBB distribution library, and their combination constitutes
the dictionary token associated with the data set and held in the catalog entry as
well. Compression and decompression of a mated data set use the dictionary
built from the dictionary token associated with the data set entry in the extended
format cell of the catalog.

The dictionary is customized to the data set through the dictionary selection
process. However, the dictionary is not stored with the data. Only the token
information is stored, because the dictionary is a table dynamically built in
storage from the token information that enables the compression and
decompression of a data set when it is opened.

Using this approach, DFSMS retains responsibility for dictionary management
and shields the user and application from the physical representation of
compressed data on disk.

Compression concepts
Some basic concepts regarding compression include:

� Import into an empty data set does not propagate extended format and
compression information.

� When data is compressed, the length of a stored record may change after an
update without any logical record length change.

� Locate mode processing is allowed but requires a larger number of internal
work areas to process.

� ISMF adds a %user data reduction (compression factor) field in data set
application.
 Chapter 2. Performance 99

� IDCAMS REPRO copies data sets without decompressing:

– If the target data set is eligible for compression, and
– If the target device is a like device, or CI sizes are equal for VSAM

� Otherwise, REPRO decompress the data when reading and optionally
compresses the data when writing.

� Our SMF sample report shows the compression factor.

� LISTCAT lists the compression related information.

� IEHLIST indicates that the data set is compressed.

� DFSMSdss™ can be used for:

– Logical dump: This does not change format from compressed to
non-compressed or vice versa; and includes cataloging information with
dump.

– Logical restore: This does not change format from non-compressed to
compressed.

– Logical copy: This never changes the format from non-compressed to
compressed.

– DFSMShsm avoids double compression.

VSAM compression
VSAM compression is done transparently to the application, through the data
class (DC) parameter in SMS data sets. This DC assigned to the data set has to
specify the following DSNTYPE=EXT with a required COMPACTION=Y (blank
defaults to N). Figure 2-8 shows the ISMF list of the DC:

Figure 2-8 ISMF Data Class display

VSAM compression only applies to KSDS in extended format. All the fields to the
left of the key in the logical record are not compressed. In your next data model,
you can define the key field with offset equal to zero.

 DATACLAS EXTENDED MEDIA
 NAME DATA SET NAME TYPE ADDRESSABILITY COMPACTION TYPE
 --(2)--- -------(26)------- -----(27)----- ---(28)--- -(29)-
 DCSMB EXTENDED REQUIRED NO ---- ------
 DCSTRIPE EXTENDED REQUIRED NO ---- ------
 DCXXXX EXTENDED REQUIRED NO ---- ------
 DIRECT ------------------ NO ---- ------
 ECCST ------------------ NO YES MEDIA2
 EHPCT ------------------ NO YES MEDIA3
100 VSAM Demystified

Compression affects the catalog, VTOC, and SMF information about VSAM data
sets. Refer to “Compression information sources” on page 101 for information on
how to get this data.

Compression performance
The relative CPU compression cost depends on:

� Dictionary size:

Usually, you do not have much control over this.

� Ratio of reads to writes of compressed records:

Ziv-Lempel expands faster (less CPU cycles) than compresses. This means
that it is better suited for data sets with a high read-to-write ratio.

Table 2-14 shows the amount of processing per compressed read or write
operation that we found in our lab environment.

Table 2-14 Comparing compression

We recommend that you:

� Do not use compression for data sets with low read-to-write ratio (less than
60%).

� Set key offset equal to zero.

Compression information sources
Compressed data sets have specific information about the compression process
in different sources.

Type of access a

a. SMB was used in all experiments

Compression EXCPs Device connect
time (sec)

Step elapsed
time (sec)

Initial load No 12813 28.38 48

Initial load Yes 10243 23.09 57

Direct access
(updates/inserts)

No 280276 62.5 189

Direct access
(updates/inserts)

Yes 288461 74.23 112

Direct access
(reads)

Yes 99347 15.90 76

Direct access
(reads)

No 102697 16.43 77
 Chapter 2. Performance 101

� Catalogs:

ICF catalogs are not eligible for compression, but are enhanced to contain
additional information about compressed format data sets in the extended
format cell of the catalog entry. The extended format cell is part of the VSAM
volume data set (VVDS) component of the ICF catalog.

The extended format cell holds:

– Number of stripes (STRIPE-COUNT)
– Compression flags (COMP-FORMAT)
– Physical block size
– Non-compressed user data set size in bytes (USER-DATA-SIZE)
– Compressed user data set size in bytes (COMP-USER-DATA-SIZE)
– Active dictionary token (ACT-DIC-TOKEN — Active Dictionary Token or

NULL)
– Whether user data sizes are valid (SIZES-VALID)
– Compression characteristic record.

In the appendix, there is a REXX routine to search in a catalog for all
compressed data sets or an specific one. It shows for each of them the percent
compression ratio. This tool allows you to determine if your CPU’s cycles are
efficiently utilized, in terms of saving storage media, channel cycles, and buffer
pools. Refer to “SMFLSR sample program” on page 380.

� SMF:

New fields have also been added to SMF type 64 records for VSAM
compression. These new fields record the size of the data before and after
compression, flags for extended format and compression, and dictionary
tokens used for compression. You can find more detailed information on the
SMF record layout in MVS/ESA SP V5 System Management Facilities (SMF),
GC28-1457.

QSAM compression information in the type 14 and 15 records is updated
when CLOSE is performed on a sequential compressed format data set.
Information on the dictionary token selected and the compressed and
non-compressed data set size is added to the SMF type 14 and 15 records.

This information is also maintained in the extended format cell in the catalog.

� VTOC:

There is now a compression indicator, DS1COMPR, and an extended format
data set indicator, DS1STRP, in the VTOC. Because a compressed format
data set must be an extended format data set, both indicators are on for
compressed format data sets:

VTOC Format 1 DSCB
102 VSAM Demystified

DS1STRP — extended format VSAM data set. Contained within the
DS1SMSFG offset x’ 4 E’

DS1COMPR — Compressed data set. Contained within the DS1FLAG1
offset x’ 3 D’

2.6.16 VSAM Data striping
Usually, in a multi-extent, multi-volume VSAM data set processed in sequential
access mode, processing does not present any type of parallelism for I/O
operations among the volumes. This means that when an I/O operation is
executed for an extent in a volume, no other I/O activity from the same task/same
data set is scheduled to the other volumes. In a situation where I/O is the major
bottleneck, and there are available resources in the channel subsystem and
controllers, it is a waste of these resources.

Data striping addresses this performance problem by imposing two modifications
to the traditional data organization:

� The records are not placed in key ranges along the volumes; instead they are
organized in stripes.

� Parallel I/O operations are scheduled to sequential stripes in different
volumes.

By striping data, the tracks in the case of SAM, and the control intervals (CIs) for
VSAM, are spread across multiple devices. This format allows a single
application request for records in multiple tracks and CIs to be satisfied by
concurrent I/O requests to multiple volumes.

The result is improved performance by achieving data transfer into the
application at a rate greater than any single I/O path. The scheduling of I/O to
multiple devices in order to satisfy a single application request is referred to as an
I/O packet.

VSAM data striping topics
Data striping support for VSAM was initially provided with DFSMS 2.10. Support
is provided for all VSAM organization, including KSDS, ESDS, RRDS, VRRDS,
and LDS.

The idea is to spread sequenced data CIs in different data CAs located in
different volumes. Following are the characteristics of a VSAM striped data set:

� Striping is done by CI, as opposed to a track for SAM.

� A stripe is associated with a single volume or a set of volumes (if you have
multi-layer).
 Chapter 2. Performance 103

� Only the data component of a base cluster may be striped.

� A data set may have up to a maximum of 16 stripes.

� A stripe on a single volume has a maximum of 123 extents per stripe.

� A multi-layered stripe (a stripe allocated on several volumes) has a maximum
of 255 extents per stripe.

� The following features are supported in a striped VSAM data set:

– Extended addressability (>4GB):
– Compressed format
– Partial release

� A data set is system-managed.

� A data set is allocated in extended format.

� Prior to DFSMS z/OS 1.3 a striped data set cannot be reused.

� A data set may be assigned either GUARANTEED SPACE (does not support
multi-layered) or NON-GUARANTEED SPACE.

� For guaranteed space, the number of stripes is equal to the number of
volumes (VOLUME COUNT) you specify in the data class or the VOLUMES
parameter in JCL, up to a maximum of 16 stripes. The JCL specification
overrides the data class.

For non-guaranteed space, SMS determines the number of stripes to use
based on the value of the SUSTAINED DATA RATE(SDR) in the storage
class.

Figure 2-9 shows an example of a four-stripe VSAM data set.
104 VSAM Demystified

Figure 2-9 Striped VSAM data set

As you can see, a data control area is formed by CIs not within sequenced key
range. Also for a KSDS, index records in the sequence set contained in the same
CI index point to different CAs.

Layering and striped data
VSAM supports multi-layering. A layer in a striped environment is defined as the
relationship of the volumes that make up the total number of stripes. That is,
those volumes that participate as part of an I/O packet.

Once the stripe extends to a new volume, and the I/O packet changes, this
constitutes another layer. The Sequential Access Method (SAM) is restricted to
extending only to the current stripe volume and does not support the concept of
multi-layering.

Figure 2-10 shows an example of the concept of layering with a three-stripe data
set.

Example: Data CI size - 4k, Physical Blocksize - 4k
 4k blocks per 3390 track - 12, Stripe count - 4

 CYL (n n)

C
O
N
T
R
O
L

A
R
E
A

Stripe/VOL 1 Stripe/VOL 2 Stripe/VOL 3 Stripe/VOL 4

1st track

2nd track

3rd track

4th track

CI
0
4
9

CI
0
5
3

CI
0
5
7

CI
0
9
3

thru
CI
0
5
0

CI
0
5
4

CI
0
5
8

CI
0
9
4

thru
CI
0
5
1

CI
0
5
5

CI
0
5
9

CI
0
9
5

thru
CI
0
5
2

CI
0
5
6

CI
0
6
0

CI
0
9
6

thru

CI
0
0
1

CI
0
0
5

CI
0
0
9

CI
0
4
5

thru
CI
0
0
2

CI
0
0
6

CI
0
1
0

CI
0
4
6

thru
CI
0
0
3

CI
0
0
7

CI
0
1
1

CI
0
4
7

thru
CI
0
0
4

CI
0
0
8

CI
0
1
2

CI
0
4
8

thru

CI
1
4
5

CI
1
4
9

CI
1
5
3

CI
1
8
9

thru
CI
1
4
6

CI
1
5
0

CI
1
5
4

CI
1
9
0

thru
CI
1
4
7

CI
1
5
1

CI
1
5
5

CI
1
9
1

thru
CI
1
4
8

CI
1
5
2

CI
1
5
6

CI
1
9
2

thru

CI
0
9
7

CI
1
0
1

CI
1
0
5

CI
1
4
1

thru
CI
0
9
8

CI
1
0
2

CI
1
0
6

CI
1
4
2

thru
CI
0
9
9

CI
1
0
3

CI
1
0
7

CI
1
4
3

thru
CI
1
0
0

CI
1
0
4

CI
1
0
8

CI
1
4
4

thru
 Chapter 2. Performance 105

Figure 2-10 Layering in VSAM data set striping

Implementing VSAM data striping
To create a striped VSAM data set, you must do the following:

� Define an SMS-managed VSAM data set in extended format.

You should specify Data Set Name Type in the data class. This forces the
allocation in a DASD controller supporting EF. Data Set Name Type may be
set to EXT Preferred (SMS tries to allocate in a controller supporting EF). The
data set is not defined as striped if it is not allocated in extended format.

� Specify the Sustained Data rate (SDR) parameter in the storage class for
either guaranteed or non-guaranteed space. This tells SMS that you want to
implement striping.

� For guaranteed space, specify the VOLUME COUNT in the data class or the
VOLUMES parameter in JCL. The JCL specification overrides the data class.

VOLUME COUNT represents the number of volume cells associated with
data set in catalog entries. If additional volumes are required, the data set
access must be closed, the IDCAMS ALTER ADDVOLUMES command must
be issued. With z/OS DFSMS 1.3 the MAXIMUM VOLUME COUNT data
class parameter is introduced. It represents actual maximum number of

Primary space allocation
Secondary space allocation

Stripe 1 Stripe 2 Stripe 3Layer 1: VOLA VOLB VOLC

Layer 2: VOLA VOLD VOLC
Stripe 1 - extends on same volume
Stripe 2 - extends to VOLD
Stripe 3 - extends on same volume

Layer 3: VOLE VOLF VOLG
Stripe 1 - extends to VOLE
Stripe 2 - extends to VOLF
Stripe 3 - extends to VOLG

Stripe 1 - extends on same volume
Stripe 2 - extends on same volume
Stripe 3 - extends on same volume

 LSS1

VOLA VOLB VOLC

VOLD

VOLE VOLF VOLG
106 VSAM Demystified

volumes an SMS-managed VSAM cluster can span. Now, volumes can be
added dynamically to the cluster without manual intervention and without
taking the application down.

If you do not specify either the volume count or the volume serial numbers,
you only get a single stripe.

� For non-guaranteed space, just specify the SDR value in the storage class.
SMS computes the number of stripes based on the rule that each volume
delivers 4 MB/second rate. The volume count is ignored. Then, if you specify
16 MB/sec, VSAM generates a 4-stripes data set.

As a simple example: if you specified a SDR of 17MB/sec, your data set will
be defined with 4 stripes.

Examples of defining striped data sets
In this example, we create a striped VSAM data set using guaranteed space, and
a specified volume count of 4. The data class name is KEYEDEXG, and the
storage class is STRIPE.

Figure 2-11 Sample JCL to create a striped data set

//STRIPED JOB 'DEF STRIPED-EF VSAM DS',MSGCLASS=X,NOTIFY=&SYSUID
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE DAWN.KSDSEXG
 DEFINE CLUSTER -
 (NAME(DAWN.KSDSEXG) -
 DATACLASS(KEYEDEXG) -
 STORAGECLASS(STRIPE))
 LISTC ALL ENTRIES(DAWN.KSDSEXG)
/*
 Chapter 2. Performance 107

The content of the KEYEDEXG data class is:

Figure 2-12 Sample content of KEYEDEXG data class

CDS Name . . . : SYS1.SMS.SCDS
Data Class Name : KEYEDEXG

Description : USING GUARANTEED SPACE

Recorg : KS
Recfm :
Lrecl. : 300
Keylen : 8
Keyoff : 0
Space Avgrec : K
 Avg Value : 300
 Primary : 600
 Secondary : 100
 Directory :
Retpd Or Expdt :
Volume Count : 4
 Add'l Volume Amount . :
Imbed :
Replicate :
CIsize Data : 4096
% Freespace CI : 10
 CA : 10
Shareoptions Xregion . . :
 Xsystem . . :
Compaction :
Media Interchange
 Media Type :
 Recording Technology :
Data Set Name Type . . . : EXTENDED
 If Extended : REQUIRED
 Extended Addressability : NO
 Record Access Bias . . : USER
Reuse : NO
Initial Load : RECOVERY
Spanned / Nonspanned . . :
BWO :
Log :
Logstream Id :
Space Constraint Relief . : NO
 Reduce Space Up To (%) :
108 VSAM Demystified

The content of the STRIPE storage class is:

Figure 2-13 Sample content of STRIPE storage class

CDS Name : SYS1.SMS.SCDS
Storage Class Name : STRIPE
Description : TO BE USED FOR STRIPING TEST

Performance Objectives
 Direct Millisecond Response . . . :
 Direct Bias :
 Sequential Millisecond Response . :
 Sequential Bias :
 Initial Access Response Seconds . :
 Sustained Data Rate (MB/sec) . . . : 17
Availability : NOPREF
Accessibility : NOPREF
 Backup :
 Versioning :
Guaranteed Space : YES
Guaranteed Synchronous Write . . : NO
Cache Set Name :
CF Direct Weight :
CF Sequential Weight :
 Chapter 2. Performance 109

This is the job output. The data set is explicitly defined with four stripes with the
specified volume count of 4:

Figure 2-14 Sample IDCAMS control statements and output for four stripes

In this example, we create a striped VSAM data set using non-guaranteed space
and SDR 17 MB/sec:

//STRIPED JOB 'DEF STRIPED-EF VSAM DS',MSGCLASS=X,NOTIFY=&SYSUID
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE DAWN.KSDSEXT
 DEFINE CLUSTER -
 (NAME(DAWN.KSDSEXT) -
 DATACLASS(KEYEDEXT) -
 STORAGECLASS(STRIPE))
 LISTC ALL ENTRIES(DAWN.KSDSEXT)
/*

DEFINE CLUSTER -
 (NAME(DAWN.KSDSEXG) -
 DATACLASS(KEYEDEXG) -
 STORAGECLASS(STRIPE))
IGD17070I DATA SET DAWN.KSDSEXG ALLOCATED
SUCCESSFULLY WITH 4 STRIPE(S).
IDC0508I DATA ALLOCATION STATUS FOR VOLUME SBOX30 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME MHLV14 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME SBOX31 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME SBOX28 IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME SBOX30 IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME MHLV14 IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME SBOX31 IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME SBOX28 IS 0
IDC0512I NAME GENERATED-(D) DAWN.KSDSEXG.DATA
IDC0512I NAME GENERATED-(I) DAWN.KSDSEXG.INDEX
IDC0181I STORAGECLASS USED IS STRIPE
IDC0181I MANAGEMENTCLASS USED IS MCDB22
IDC0181I DATACLASS USED IS KEYEDEXG
IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0
110 VSAM Demystified

The content of the KEYEDEXT data class is:

Figure 2-15 Example of KEYEDEXT data class

CDS Name . . . : SYS1.SMS.SCDS
Data Class Name : KEYEDEXT

Description : TO BE USED FOR STRIPING TEST

Recorg : KS
Recfm :
Lrecl : 300
Keylen : 8
Keyoff : 0
Space Avgrec : K
 Avg Value : 300
 Primary : 600
 Secondary : 100
 Directory :
Retpd Or Expdt :
Volume Count : 8
 Add'l Volume Amount . :
Imbed :
Replicate :
CIsize Data : 4096
% Freespace CI : 10
 CA : 10
Shareoptions Xregion . . :
 Xsystem . . :
Compaction :
Media Interchange
 Media Type :
 Recording Technology :
Data Set Name Type . . . : EXTENDED
 If Extended : REQUIRED
 Extended Addressability : NO
 Record Access Bias . . : USER
Reuse : NO
Initial Load : RECOVERY
Spanned / Nonspanned . . :
BWO :
Log :
Logstream Id :
Space Constraint Relief . : NO
 Reduce Space Up To (%) :
 Chapter 2. Performance 111

The content of the STRIPE storage class using non-guaranteed space is shown
here:

Figure 2-16 Example of content of STRIPE storage class

This is the job output of our second example. The data set is defined with five
stripes. SMS is allocated on 5 volumes out of the 8 volumes defined in the
storage group. Only the data component is striped:

CDS Name : SYS1.SMS.SCDS
Storage Class Name : STRIPE
Description : TO BE USED FOR STRIPING TEST
Performance Objectives
 Direct Millisecond Response . . . :
 Direct Bias :
 Sequential Millisecond Response . :
 Sequential Bias :
 Initial Access Response Seconds . :
 Sustained Data Rate (MB/sec) . . . : 17
Availability : NOPREF
Accessibility : NOPREF
 Backup :
 Versioning :
Guaranteed Space : NO
Guaranteed Synchronous Write . . : NO
Cache Set Name :
CF Direct Weight :
CF Sequential Weight :
112 VSAM Demystified

Figure 2-17 Second example with five stripes

After loading the data set, the LISTCAT output shows the HURBA only on the
first volume. For the other volumes, HURBA=0.

CA size considerations
CA size calculations are affected by striping. Normally, the CA size is the lesser
of the primary or secondary value and must not exceed 15 tracks if allocation is
in tracks; or a cylinder, if allocation is in cylinders.

In striped data sets, the CA size amount must be a multiple of the number of
stripes. That is, a CA cannot end in the middle of a stripe.

To meet this restriction, the CA size may have to be rounded to the next integral
of the stripe count. Also, since the maximum stripe count is 16, a CA size of 16
tracks must be allowed to accommodate 16 stripes. Note that CA size maximum
is increased to 16 tracks from previous 1 cylinder (15 tracks) allocation.

For striped data sets, all computations for CA size are performed using the
equivalent amount of tracks, for example:

� A data set has seven stripes.

� The equivalent allocation in tracks is (45 30), so 15 tracks are used.

� 15 tracks rounded to the next integral of stripe count is 21. But 21 is greater
than maximum of 16 tracks, so CA size is rounded down to 14 tracks.

DEFINE CLUSTER -
 (NAME(DAWN.KSDSEXT) -
 DATACLASS(KEYEDEXT) -
 STORAGECLASS(STRIPE))
IGD17070I DATA SET DAWN.KSDSEXT ALLOCATED
SUCCESSFULLY WITH 5 STRIPE(S).
IDC0508I DATA ALLOCATION STATUS FOR VOLUME SBOX31 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME SBOX28 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME SBOX29 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME SBOX30 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME MHLV13 IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME SBOX31 IS 0
IDCAMS SYSTEM SERVICES
IDC0512I NAME GENERATED-(D) DAWN.KSDSEXT.DATA
IDC0512I NAME GENERATED-(I) DAWN.KSDSEXT.INDEX
IDC0181I STORAGECLASS USED IS STRIPE
IDC0181I MANAGEMENTCLASS USED IS MCDB22
IDC0181I DATACLASS USED IS KEYEDEXT
IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0
 Chapter 2. Performance 113

Performance considerations
Consider the following when using VSAM striped data sets:

� The effective throughput gains on sequential access increases almost in
proportion to the number of stripes, unless there is contention at the device,
subsystem, path or channel level

� The throughput gains decreases from the expected, if you work with many
stripes, or the Law of Diminishing Returns starts to work due to the raising of
management. For KSDS, it has been experienced that after the fourth stripe,
the processing improvement curve flattens. You may not get performance
improvements if you define more than 4 stripes.

� The I/O response time for a striped data set is as long as the longest I/O in the
stripe or the effective throughput is limited to the slowest stripe.

� The I/O post to the application is done when all the I/O to the stripes ends.
Likewise, if an I/O error occurs in one of the stripes/volumes, the I/O operation
ends with an error.

� For striped data sets, you should use SMB to determine the number of
buffers, or you should allocate a larger value for the BUFND, depending on
your application.

If you are not using SMB, specify a BUFND value that is at least equal to the
number of stripes. SMS needs at least one buffer for each stripe/volume
accessed by the I/O request. Refer to 2.6.13, “Buffering options” on page 63
for more information. Using the default BUFND eliminates some of the
benefits of striping.

� Using LSR for a VSAM striped data set is not rejected. However, you may not
see a performance improvement in the way that NSR does.

� As we have mentioned, SMS computes the number of stripes based in your
SDR parameter divided by a 4 MB/second rate. Because your DASD volume
performs much better than this figure, you may get an actual better rate than
what you have specified in the SDR in the storage class.

� Striping does not give a benefit for data sets accessed directly. However,
these data sets are also accessed sequentially during backup, report
generating, and so on. Therefore, you may want to consider striping all your
VSAM data sets

� VSAM striping is not supported in RLS mode.

Recommendations
We make the following recommendations:

� For striped data sets, use SMB to determine the number of buffers or allocate
a larger value for the BUFND, depending on your application. Using the
default BUFND eliminates some of the benefits of striping.
114 VSAM Demystified

� All the volumes that contain the stripes should have the same speed.

� As a rule of thumb for VSAM, do not go beyond 4 stripes — if you do, you will
overload the processor.

� Define striping only for sequential processing.

2.7 VSAM performance by scenarios
Here, we simulate a scenario, where one or more VSAM data sets are causing
performance problems to key transactions in a real installation. We cover all the
aspects that may affect the VSAM I/O delay time, (Tw(IO)); and the I/O service
time, (Ts(IO)). Also, because VSAM CPU service time, (Ts(CPU)), which is used
by VSAM, has some effect on the total response time, we offer suggestions on
how to decrease it.

2.7.1 Performance scenario using RMF reports
Before we start let us say a few words about RMF™.

RMF is an IBM program product which measures z/OS system performance.
RMF has three Monitors and a Postprocessor function.

Each Monitor has a Data Gatherer and a Data Reporter. For Monitor I and
Monitor II, both functions are clustered in the same address space. For Monitor
III, they are in distinct address spaces.

� Monitor I is an ongoing non-interactive monitor measuring system variables.

� Monitor II is interactive, showing data about address spaces.

� Monitor III is interactive, showing the performance of specific transactions

In this VSAM performance management topic, we use an approach in steps that
are based on RMF Monitor III, and assumes you are in WLM goal mode:

1. Look for your most important service class period that is not reaching the goal
in the RMF Monitor III SYSSUM report (see Figure 2-18).
 Chapter 2. Performance 115

Figure 2-18 RMF SYSSUM report

HTTPS1 is a service class associated with the transactions of an HHTP
scalable server. These transactions code run in tasks under enclaves. Its
importance (I) is one (the maximum), its goal is average response time of
0.80 seconds. Its actual response time is 1.6 seconds and the performance
index is 2.0 meaning 100% out of the target.

2. Let us look at the Enclave report in Figure 2-19 to see where the problem is:

Figure 2-19 RMF Enclave report

3. In this report, you see two enclaves belonging to the service class HTTPS1
suffering 88% and 89% of delay, respectively. It means that those transactions
for this percentage of time do not progress. There are two types of resource
delays, as far as WLM is concerned:

– Delays for resources controlled by WLM. A resource controlled by WLM is
the one where WLM can change the priority of the request in the queue.
Therefore, those delays are measured by WLM in order to be minimized
(by playing with queue priority), depending on the performance index of
the service class. They are:

• CPU
• I/O (if you are in WLM I/O Management option)
• Storage

 ------- Goals versus Actuals -------- Trans --Avg. Resp. Time-
 Exec Vel --- Response Time --- Perf Ended WAIT EXECUT ACTUAL
Name T I Goal Act ---Goal--- --Actual-- Indx Rate Time Time Time

BATCH W 100 0.000 0.000 0.000 0.000
BATCHLOW S 5 25 100 0.25 0.000 0.000 0.000 0.000
HTTPW1 W 100 0.000 0.000 0.000 0.000
HTTPS1 S 1 25 0.80 AVG 1.60 AVG 2.0 44.4 0.000 1.600 1.600
OMVS W 97 0.030 0.001 0.711 0.712
OMVS S 98 0.030 0.001 0.711 0.712
 1 2 0.0 0.500 AVG 0.001 AVG 0.00 0.010 0.000 0.001 0.001

ENCLAVE Attribute CLS/GRP P Goal % D EAppl% TCPU USG DLY IDL

ENC0003 CCT HTTPS1 1 0.80 25 18.75 26.78 30 88 0.0
 HTML
 COLLOR
ENC0001 CTT HTTPS1 1 0.80 24 16.27 23.12 29 89 0.0

 HTML
 CARDOSO
116 VSAM Demystified

• Delay for HTTP Queue Server
• WLM capping

The 88% and 89% values pictured in the at RMF report refer to such WLM
managed resources.

– Here is a list of delays tracked by RMF Monitor III but not managed by
WLM:

• ENQ delays
• Operator delays (mount and messages)
• Subsystem delays (JES, HSM and XCF)

4. Now let us zoom in to these delays in the report Enclave Classification Data in
Figure 2-20:

Figure 2-20 Enclave Classification Data report

5. As you can see, detailing the enclave ENC00003, 77% of the WLM managed
delays are caused by I/O delays, that is, I/O requests from the tasks enclaves
being delayed in the UCB (IOS queue time) or in the channel subsystem
(pending time). The Using I/O value is 27%. The Using I/O concept has an
ambiguous meaning depending on who is creating such figure:

– In RMF terms (as the case) the task enclave application is executing a
channel program (connected plus disconnect) for 27% of the observed
time.

– In WLM terms, the I/O disconnect time is not included. WLM uses this
figure to derive the Execution Velocity values

6. Next we zoom a little more, going to the Monitor III Device Delay report (DEV)
in Figure 2-21.

The following details are available for enclave ENC00003 :
 Press Enter to return to the Report panel.

 Detailed Performance Statistics:

 -- CPU Time -- ------------- Execution States -------------
 Total 26.78 #STS -Using- ------ Delay ------ IDL UNK
 Delta 22.50 CPU I/O CPU I/O STO CAP QUE
 592 6 27 12 77.0 0.0 0.0 0.0 0.0 0.3
 Chapter 2. Performance 117

Figure 2-21 Monitor III Device Delay report

To date, there is no RMF report showing details (at a volume level) about the
I/O use and I/O delay of an enclave. You must know the name of the address
space where the HTTP transactions are doing I/O. It must be one of the HTTP
server address spaces. In this case it is the HTTPS000. Here we can see that
the volume VSMS15 is responsible for 70% of the delays experienced by the
enclave the HTTP transactions.

7. Then, we go to the Monitor III DEVN report in Figure 2-22 to see more details
about the volume.

Figure 2-22 Monitor III DEVN report

In the DEVN report for volume VSM15, we have the I/O response time (.022
seconds), the I/O rate (42.1 I/Os per second), the IOSQ time (0.006 second)
and the percent distribution of connect, disconnect and pending. If you want
to know how much of connect per I/O operation (AVG CONN TIME) follow this
line of thought: “If the RMF range is 100 seconds, the total connect time was 8
seconds. In 100 seconds, it was executed (42.1 * 100) I/O instructions. So,
dividing 8 by 4210, we have 2 milliseconds of AVG CONN TIME”.

8. The final step in using RMF reports is to discover the data set involved in the
performance problem. We can do this through the Monitor III DSNV report in
Figure 2-23.

 Service DLY USG CON ------------ Main Delay Volume(s) -
Jobname C Class % % % % VOLSER % VOLSER % VOLSER

HTTPS000 S SYSSTC 77 27 23 70 VSMS15 11 VSMS19
MICHAELL B NRPRIME 39 15 14 39 BPXLK1
MCPDUMP S SYSSTC 36 18 20 36 D24PK2
CHARLESR B NRPRIME 33 13 13 28 BPXLK1 3 HSML02 2 BPXSSK
DFHSM S SYSSTC 30 83 35 10 HSML17 5 SMS026 4 HSMOCD
SHUMA3 T TSOPRIME 18 52 53 13 D83ID0 5 HSML02

Device Identification -- -- Activity -- ACT CON DSC - Pending - - Jobs -
VolSer Num Type CU S Rate RspT IosQ % % % % Rsn. % USG DEL

VSMS15 006C 33903 3990-3 S 42.1 .022 .006 68 8 60 2 DB 1 0.0 0.8
VSMS10 0051 33903 3990-3 S 80.7 .011 .005 47 24 1 22 DB 11 0.2 0.7
JOBL17 0703 33903 3990-3 S 52.2 .015 .000 76 22 54 0 0.2 0.6
TSO015 006E 33903 3990-3 S 11.1 .024 .001 26 3 20 3 0.0 0.3
VSMS06 0056 33903 3990-3 S 8.9 .034 .001 30 9 18 3 DB 2 0.1 0.2
118 VSAM Demystified

Figure 2-23 Monitor III DSNV report

Finally we have all the information — the volume and the data set name (which,
incidentally, is a VSAM data set PROD.KSDS.MARCH.U12). You should
determine the largest figure between IOSQ, pending, connected, and
disconnected in your installation (in our example it is disconnect time). IOSQ is
better to pick it up in average ms per I/O operation frm the DEVN report.
Depending on the one you pick, go to the corresponding topic in this chapter,
where you find recommendations to improve it. Remember that all of these
suggestions refer to one of the three ways of solving performance problems, that
is: buy, tune, or steal.

However, before you try to find a way to improve your I/O performance, refer to
2.7.2, “Reducing the number of I/Os” on page 119, which offers suggestions to
eliminate this problem.

2.7.2 Reducing the number of I/Os
The general rule, that the best I/O is the one that is not executed, still applies to
VSAM. Therefore, before trying to improve the I/O operation, let us focus on how
to avoid these I/Os. The general techniques for doing that are explained in the
following sections.

Buffering
Buffering is one of the most important VSAM features that can be used to avoid
I/Os, and consequently to improve performance. There are two types of
buffering: VSAM controlled buffer pools, and Hiperbatch.

VSAM controlled buffer pools
VSAM controlled buffer pools are controlled by LSR, NSR, RLS, and GSR
buffering modes. Some of them allocated in the application address space and
some in the hiperspace. Refer to 2.6.13, “Buffering options” on page 63.

Let us look at the value of buffering from the perspective I/O performance by
creating the following scenario.

------------------------- Volume VSM15 Device Data --------------------------
Number: 006C Active: 68% Pending: 1% Average Users
Device: 33903 Connect: 8% Delay DB: 1% Delayed
Shared: Yes Disconnect: 60% Delay CU: 1% 1.4
 Delay DP: 0%
-------------- Data Set Name --------------- Jobname ASID DUSG% DDLY%
 Chapter 2. Performance 119

Scenario
� KSDS cluster requiring 0.5 GB (512 * 1024 * 1024 bytes) in a 3390

� Data CI size is 4K

� FREESPACE (15 9)

� The control area size is not restricted, then it is 15 tracks

� There is 180 data CIs in each control area

� The index control interval size is 1536 bytes

� There is 729 Control Areas, and therefore 729 index sequence set CIs

� There is 5 index set records

� There is 3 index levels

Supposing no hits in the buffer
� Program application generating 45 random reads per second, with a

M/M/1queue behavior. This M/M/1 means normal distribution for the
inter-arrival time (M) and for the service time (M) plus just one (1) server

� 100% of DASD caching hits for index, each I/O at 0.5 msec

� 100% of DASD caching hits for index causing an average service time of 0.5
msec

� 50% of DASD caching hits for data, each causing an average service time of
6 msec

Calculation
� I/O Service_Time per average Read caused by three index I/Os and one data

I/O: (3 x 0.5 + 6) = 7.5 ms

� Device Utilization (U)% = IO_Rate x Service_Time x 100= 45 x 0.75 = 33.75%

� I/O Queue_Time = I/O_Service_Time x (U / (1-U))= 3.8 ms

� I/O_Response_Time = 7.5 + 3.8 = 11.13 ms

Supposing all index set in the buffer
Supposing all index set in the buffer (66% buffer hit) and 50% buffer hits for data:

� I/O Service_Time per average Read caused by one index sequence set I/O
and one data I/O: (1 x 0.5 + 3) = 3.50 ms

� Device Utilization (U)% = IO_Rate x Service_Time x 100= 45 x 0.3 = 15.75%

� I/O Queue_Time for M/M/1= I/O_Service_Time x (U / (1-U)) = 0.65 ms

� I/O_Response_Time = 3.00 + 0.65 = 3.65 ms

� I/O_Response_Time gain proportion = 11.13 / 3.65 = 3.04 times faster
120 VSAM Demystified

The price of the I/O improvement.

To improve 304% your I/O use buffers, and consequently a trade off between I/O
and memory. How much more buffers?

� For five index set buffers: 5 x 1536 = 7680 KB

� For data buffers calculation we may use a derivation of the 80/20 rule. To have
80% hits we need 20% of buffers. To have 50% hits (as in the scenario)
maybe we just need 10 percent. We have 180 x .91 = 163 CIs not free per CA.

10% of the total number of CIs is: 729 x 163 x 0.1 x 4 _KB = 47.5_ MB

As you can see in an address space of 2Gb and with central storage much larger
than 2Gb the storage price is minimum for the I/O performance gain We have a
bargain.

Hiperbatch
Hiperbatch is designed to eliminate the problems caused by:

� Multiple jobs in one z/OS image requesting data from the same QSAM/VSAM
NSR data set simultaneously. Each job causes I/O operations to the device
holding the data set. The more jobs that access the data set concurrently, the
more I/O operations and contention for the device, and the longer the wait
time for each I/O request.

� Jobs or job steps passing temporary or short-lived QSAM or VSAM NSR data
sets to subsequent jobs. As a job completes, it puts the data used back onto
DASD.

One important aspect of Hiperbatch is that installations can take advantage of
these performance benefits without having to change existing application
programs or the JCL required to run them.

Hiperbatch depends on the data lookaside facility (DLF) address space, to
control access to an Hiperspace Expanded Storage Only (HS ESO).

RACF DLFCLASS profiles provides the data set name list that DLF needs. The
existence of a DLFCLASS profile for a VSAM data set identifies that data set as
one that is eligible to be processed as a DLF object.

When DLF is active, the first attempt to access a QSAM or VSAM data set
defined to DLF causes it to create a DLF object (like a data set in the HS ESO). A
DLF object contains data from a single data set managed by Hiperbatch. The
user (an application program) is connected to the DLF object, and the connected
user can then access the data in the object through normal QSAM or VSAM
macro instructions.
 Chapter 2. Performance 121

When subsequent users access the data set, they are connected to the object.
The system manages shared access to the DLF object in the same way it would
manage shared access to the data set. When a user relinquishes access, DLF
disconnects that user from the object.

A DLF object exists until there are no users of the data set, at which time DLF
deletes the object. As long as there is at least one user of a data set the access
pattern means that the DLF object exists.

However, if a batch job or job step creates a data set and passes it as input to
another job or job step, there is not always one user of the data set, and the
system would delete the DLF object. To prevent this automatic deletion of an
object, define the data set to DLF as a retained DLF object. A retained DLF
object is one that the system does not automatically delete when there are no
users of the data set.

Refer to Figure 2-24 for the following example:

We have a non-retained data set (called Master), that is a DLF object. All the
reading jobs should be started in parallel (as usual without Hiperbatch). The first
job (J1) reads sequentially the record one (R1) and suffers the I/O delay. After the
I/O completion, one copy of R1 is delivered to J1, and another copy is kept in the
HS ESO by Hiperbatch. When J2 requests an I/O for R1 reading, it is intercepted
and fulfilled with the R1 copy in the HS ESO. Then, for N Jobs reading M records
each, from the Master, we have only M accesses to DASD, instead of M * N.

Figure 2-24 highlights the I/O operations not executed.
122 VSAM Demystified

Figure 2-24 Hiperbatch example

Here are some comments about using Hiperbatch with VSAM:

� VSAM non-shared resource (NSR) access is a requirement.

� Hiperbatch does not support extended format data sets.

� VSAM organizations KSDS, ESDS, and RRDS with a control interval of 4096
bytes, or a multiple of 4096 bytes, are eligible.

� The EXCP counts in SMF records used to record I/O use do not change; the
counts reflect I/O operations requested regardless of whether a request is
satisfied by a physical I/O operation or from a DLF object in expanded
storage.

� If the data set is a VSAM key sequenced data set (KSDS), the DLF object
contains only the data component, not the index component.

Note: means chronological events

(1) J0 Updates master
(2) J0 Closes and unlockes master
(3) J1 Reads R1 (copy to HS ESO)
(4) J1 R1 (copy to J1 buffer)
(5) J2 Reads R1 (from HS ESO)
(6) J2 Reads R2 (copy to HS ESO)
(7) J2 R2 (copy to J2 buffer)
(8) J1 Reads R2 (from HS ESO)

Hiperbatch: Non-Retained Dataset Example

J0

x

J1
J2

Updates

Close

Master

HS ESO

R2 R2

R1R1

6

3

4
5

2

1

8

7

 Chapter 2. Performance 123

� To avoid data integrity exposures, Hiperbatch does not process a VSAM data
set with shareoptions 3 or 4, even if that data set has been defined as eligible
for Hiperbatch.

� VSAM data sets with the number of strings (ACBSTRNO) value greater than
1, cannot be Hiperbatch objects.

� VSAM data sets must be opened by the base cluster name.

� If a random (or sequential) program changes data in the data set, that change
is also made to the DLF object.

� This method is best suited for sequential processing.

IBM provides an online monitor that you can use to track Hiperbatch activity on
your system. Using the monitor, you can evaluate:

� How Hiperbatch is using expanded storage (or central storage in
z/Architecture™)

� The use patterns for individual data sets

� The I/O operation savings for individual jobs

For information about how to install the Hiperbatch monitor, see MVS Hiperbatch
Guide, GC28-1470. Once it is installed, you can invoke the monitor under TSO/E
by issuing the following command:

COFDMON

I/Os associated with CA splits
These I/Os should be avoided. CA splits generate many I/O operations. CA splits
occur in a KSDS or VRRDS along inclusions and increase the logical record size
during an update. CA splits may be minimized by the use of CA free space. Refer
to “Splits” on page 15. However, a CI splits is not a real performance problem
because it needs less than five I/Os.

Secondary space allocations
Every secondary allocation implies going through End-of-Volume processing with
several I/Os in the catalog and VTOC. Refer to 2.6.1, “Allocation units” on
page 49. You should require a consistent amount of secondary allocation.

Write checks
Write checks needlessly increases the number of I/O operations. These should
be avoided.
124 VSAM Demystified

RECOVERY option
Use the SPEED option instead, when loading a VSAM data set. Refer to 2.6.11,
“Initial load option” on page 59.

2.7.3 I/O wait time (IOSQ) for VSAM data sets
Tw(IO) has two components respectively: IOS Queue Time and Pending Time.
First lets consider IOSQ time. Let us suppose that you are reading this because
the IOSQ time is the dominant factor in the I/O of your VSAM data set.

IOS Queue Time is the time waiting for the device availability in the z/OS
operating system. For a non-ESS device, Input Output Supervisor (IOS) does not
start an I/O operation to a device if there is a previous one executing. In this case,
the I/O operation is queued in the UCB (a control block representing the device to
IOS).

A queue starts to build up when the unique server (device) is utilized above 35
percent. This rule applies to the IOSQ Time. This utilization can be caused by
activity coming from this sysplex image or from another image (in a shared DASD
case), or both.

To decrease the IOSQ Time, you can:

� Buy a faster device/channel to decrease the I/O Service Time (Ts(IO)) and
consequently the utilization (for the same I/O load) and the queue time.

� Decrease the Ts(IO) by tuning. Refer to 2.7.4, “I/O service time (connect) for
VSAM data sets” on page 129.

� Change the service class goal containing the transaction which is generating
the I/Os causing the IOSQ time delay. Increase the importance of the goal or
change its numerical value to make it more difficult to be obtained. In
consequence, the I/O priority is raised by the WLM goal mode. This happens
when the transaction is not reaching its goal and the major delay is the I/O
delay. Be aware that, in this case, you are not improving the I/O in general, but
just improving the response time of your favorite transactions.

� Decrease the I/O rate against the device by avoiding placement of several
active data sets on the same volume, (mainly index and data from the same
KSDS). If this happens, verify your ACS routines, perhaps by using
guaranteed space to force the index in a specific volume. Use different
storage groups or the new function DFSMS Data Set Separation announced
in DFSMS z/OS 1.3, where you can separate data sets from each other in
different physical DASD controllers.

� Increasing the parallelism as a way to decrease queue times:
 Chapter 2. Performance 125

– If your controller has support for dynamic parallel access volume (PAV) as
in the ESS controller, the most effective action to decrease your high IOSQ
time is to implement such hardware/software feature. With PAV you may
have parallel I/Os against the same logical 3390/3380 device (two writes in
the same extent are not allowed) consequently decreasing the IOSQ time.
However, PAV has a price that is, to have N parallel access, we need to
have N alias UCBs and UCWs. If dynamic PAV is activate, WLM manages
the number of UCBs and UCWs per device, increasing the parallelism in
certain devices (and decreasing in others) in order to fulfill the goals of the
most important service classes. Refer to “VSAM and ESS controllers” on
page 134.

– Use the great level of parallelism implemented through FICON channels.

DASD cache highlights
A DASD cache is fast storage located in the controller. In a sense it resembles
the buffer pool in memory. A cache, has two functions:

� Minimize access to disks (by having cache hits).

� Serve as a speed matching buffer to synchronize hardware elements with
different speeds (like channels and disks) along a cache miss during
sequential access.

In this explanation the term disk does not have the same meaning of DASD. Disk
implies the RAID media, where data is stored in fixed block architecture (FBA)
blocks through an SSA or an SCSI protocol as used by modern controllers.
DASD is the logical 3390/3380 device as perceived by you, your application, and
your MVS operating system.

To have random cache hits (saving disk access) for reads and writes, the I/O
workload must frequently access the same data or index CI in VSAM terms.
Typically there are two types of hits, when the application revisits data:

� Exactly the same logical record, in a CI is already in cache.

� Different logical record in the same CI already in cache because another
logical record was previously accessed.

For sequential access, it is important to say that cache does not save data CI
disk I/O operations. The cache only tries to match the speed of the disks and
channels. Consequently, the faster resource is less utilized. The controller has a
sequential algorithm for reads that implements a look ahead mechanism.
126 VSAM Demystified

VSAM hints to decrease disconnect time due to cache
If the average disconnect time of your key VSAM data sets is above two
milliseconds, read this topic. In our example, refer to the scenario described in
Step 6 on page 117.

In the explanations given in this chapter, we still use Monitor III data.

For this performance scenario, let us look at the RMF Monitor III Volume Cache
report in Figure 2-25.

Figure 2-25 Volume Cache report

There are no cache reports per data set in RMF. You can use the volume (the
one that contains your VSAM data set) report to reach your conclusions.

Look at the Inhibit cache load (ICL) value first. If it is consistently non-zero, this
may mean:

1. IDCAMS does not properly set the cache attributes in the volume, verify this
by checking whether CACHE and DFW are active in the report header. Then,
change it to normal and DFW.

2. It is an SMS managed data set, and its cache attribute is never-cache. Then,
change its MSR value to allow always-cache or may-cache.

3. It is an SMS data set, and its cache attribute is may-cache. Then change it to
allow always-cache.

If, after making the modifications listed above, the disconnect time does
decrease, or your ICL is close to zero, we have one of two cases:

� Cache overloaded.
� Your data set is cache-unfriendly.

The following details are available for Volume VSM015 on SSID 0043
Press Enter to return to the Report panel.

Cache: Active DFW: Active Pinned: None

 ------ Read ------ --------- Write --------- Read Tracks
 Rate Hit Hit% Rate Fast Hit Hit% %
Norm 3.7 3.6 79.8 0.8 0.8 0.8 100 82.2 0.1
Seq 0.0 0.0 100 0.1 0.1 0.1 93.3 21.1 0.0
CFW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 3.7 3.7 98.9 0.9 0.9 0.9 99.1 80.0

------ Misc ------ - Non-Cache - --- CKD ---- - Record Caching -
DFW Bypass : 0.0 ICL : 0.0 Write: 0.0 Read Miss : 0.0
 Chapter 2. Performance 127

Follow the logic below to determine in your situation. If we reach the conclusion
that your data set is cache unfriendly, better to undo modifications 2 and 3 above,
and read “Decrease VSAM disconnect time in general” on page 129.

� If the access is bounded to writes (READ% consistently below 50%), take a
look in the WRITE HIT% column.

Pick up the line corresponding to the highest value in Write RATE (between
NORM and SEQ).

– If NORM is the larger, you have predominantly a random access. Compare
in the NORM line, the FAST value with RATE.

• If they are not the same (very seldom), it implies that SMS is not always
using DFW cache mode.

• If they are almost the same, check the WRITE HIT% value. It must be
higher than 95%, if less the controller “almost 100% quick writes”
(almost 100% of the random writes should be hits) is not working.

– If SEQ is the larger value (you are writing sequential) and WRITE HIT%
less than 95%, take a look in the DFW Bypass figure. If consistently
non-zero, this means:

• The write sequential load saturated the NVS and DFW bypass
occurred. It could be the records are sent synchronously from volatile
cache to disks, or it could be the records are sent asynchronous from
volatile cache to disks and this time is included in disconnect time. In
this case your workload is the cache-unfriendly type. Refer to
“Decrease VSAM disconnect time in general” on page 129.

� If the access is dominant in reads (READ% consistently above 50%), look in
the READ HIT% column. Pick up the value corresponding to the highest value
in READ RATE (between NORM and SEQ).

– If NORM is the larger, you have a random access. If the corresponding
READ HIT% is less than 80%:

• A low random Read hit. This means that your reads are candidates for
using cache, but they are not having enough hits. Your workload may
be cache unfriendly, if so, here are two suggestions:

Be sure that SMS is using record level cache (RLC) for reads. It avoids
polluting the cache with the rest of the logical 3390/3380 physical track.

Try using a smaller CI for read data or less free space in the CIs. It
avoids polluting the cache with other non-referenced logical records or
free space.

Read “Decrease VSAM disconnect time in general” on page 129

– If NORM is the smaller, you have a sequential access. If the corresponding
READ HIT% is less than 80%:
128 VSAM Demystified

• A low sequential read hit. This means that the speed of the channel is
higher than the disk speed. In this case refer to “Decrease VSAM
disconnect time in general” on page 129.

• The KSDS has many CI splits, impeding the controller in recognizing
the sequential pattern; then there is no look-ahead and the cache is
treated in LRU mode. Reorganizing the data set may be an answer.
Refer to 4.1, “Reorganization considerations” on page 204.

Decrease VSAM disconnect time in general
One of the reasons to be reading this section is that you have reached the
conclusion that your data set is cache unfriendly.

If cache cannot help your VSAM data set, you need to reduce the contention on
the disks. Here are some suggestions.

� Reducing I/O rate (demand) against the controller. This can be done by:

– Either compression or use of smaller CIs for random processing. If you are
accessing data randomly, try to use a smaller CI for read data or less free
space in the CIs. It avoids polluting the cache with other non-referenced
logical records or free space

For compression, refer to 2.6.15, “Data compression” on page 94. For use
of smaller CIs, refer to 2.6.6, “Control interval size” on page 54.

– Reorganize of the data set, if there is plenty of free space in the CIs. Refer
to 2.7.4, “I/O service time (connect) for VSAM data sets” on page 129.
However, this reorganization may cause splits.

– Reducing the number of active data sets in the controller.

� Decrease the number of writes in the controller by moving data sets, to avoid
the effect of write penalty in RAID-5. Use the SHARK feature, JBOD, (“Just a
Bunch of Disks”) for your temporary data sets to get rid of write penalty. Use
Shark 800 RAID-10 (RAID-1 plus striping) well suited for intensive write
workloads.

� Try to allocate your data set in 3390/3380 logical volumes mapped in less
capacity disks (18.2 Gb) spinning at 15,000 RPM instead of 10,000RPM.

2.7.4 I/O service time (connect) for VSAM data sets
Connect time means the period of time when the channel is transferring data
from or to the cache or exchanging control information with the controller about
one I/O operation.
 Chapter 2. Performance 129

The average connect time per I/O operation depends on:

� The speed of the communication (including protocol) between the channel
and the controller.

� The amount of data transferred per I/O operation (in all of the chained Read
or Write CCWs)

To analyze your I/O connect time, we recommend that you know the type of
access your VSAM data set is facing: sequential or direct. Let us divide our
analysis following these two types:

� Sequential access. If you did not change your channel and controller and you
observe a relatively high connect time for your sequential access VSAM data
set, things are working well. It means that a great deal of data is being
transferred in just one I/O operation, through one CCW with a big blocksize or
many CCWs (many buffers). So, the recommendation is to increase the
average connect time. You can get that by using plenty of buffer space in the
buffer pool for sequential processing.

Doing that, you decrease the number of SSCHs instructions (I/O operations).
For every I/O operation starting, there is a standard conversation between the
channel and the controller. If you decrease the number of SSCH instructions,
but are transferring the same amount of data, you save in total connect time.
In other words your average connect time (per I/O operation) increases, but
your total connect time decreases. Refer to Table 2-5 on page 73 and
Table 2-14 on page 101. If the cluster is going to be accessed sequentially
and randomly, the CI size should be made smaller (4 KB). To solve the
performance problem in sequential access, you can define many data buffers,
thus causing VSAM to chain CIs in just one channel program. Refer to 2.6.6,
“Control interval size” on page 54.

� Direct access. Here the smaller the average connect time, the better. You
should have small CIs. This avoids bringing unneeded logical records into
memory.

Decrease average connect time
What follows a set of recommendations to decrease the average connect time for
both direct and sequential accesses:

� Use FICON native or FICON Express channels for sequential access. For that
your controllers must have a host adapter able to understand such protocol.

� Use data compression in CPU:

There is a difference between compaction and compression. Compaction has
to do with the simple task of extracting blanks and zeroes from a text.
Compression is a much more elaborate task, where dictionaries may be used
to obtain the best result (like the Ziv-Lempel algorithm). These dictionaries
130 VSAM Demystified

contain the most repeated set of characters found in the text and their
respective compressed substitution. Refer to 2.6.15, “Data compression” on
page 94.

� Use the ECKD™ extended format:

ECKD extended format (also called extended format) is a technique that
effects the way count key data is stored in a 3390/3380 logical track. It
improves performance for certain types of I/O operation, by decreasing
Ts(I/O) with a better channel program. Extended format is the base for using
VSAM features such as SMB, data striping, compression. and It is
recommended that, if time permits, you convert your data sets to extended
format to get this better performance. Refer to Table 2-15, showing the
following results from our tests of random processing: extended format versus
non-extended format data sets.

Table 2-15 Random processing: extended format versus non-extended format

Here, for random processing, you can see some decrease in the number of
EXCPs and in the connect time. However, the big performance appeal of
extended format is that it allows the use of strong performance capabilities
such as striping, compressing, and SMB.

� Less free space in the CIs:

The existence of a significant amount of free space in a CI, may increase the
I/O connect time. This free space may be caused by an excess in the
definition of the data set, or by CI and CA splits. Remember that any CI with a
logical record is moved to storage in a sequential read. This is not true with
totally free CIs, where no I/O operations are executed towards them.

The solution here may be a reorganization. Refer to 4.1, “Reorganization
considerations” on page 204, watching for an increase in the number of splits.

� Parallel VSAM I/O operations:

Sometimes, if you cannot decrease the service time (Ts), you may increase the
ETR (and decrease the queue time) by introducing parallelism. There are two
types of I/O parallel processing:

Ext format Buffering EXCPs Connect
time (sec)

No Default 861744 124

Yes Default 764333 120

Note: We are not saying that all insertions increase the average free space
per byte in the data set.
 Chapter 2. Performance 131

� Within a transaction:

The VSAM option which allows I/O parallelism within a transaction or task
(when accessing a VSAM cluster) is data striping. Refer to 2.6.16, “VSAM
Data striping” on page 103.

� Between transactions:

There are VSAM options which allow parallelism between transactions or
tasks, when accessing a VSAM cluster, such as:

• STRNO: In multiple string processing, there can be multiple
independent Request Parameter Lists (RPL) within an address space
for the same data set. The data set can have multiple tasks that share a
common control block structure. There are several ACB and RPL
arrangements to indicate that multiple string processing will occur.

• In the first ACB opened, STRNO or BSTRNO is greater than 1.

• Multiple ACBs are opened for the same data set within the same
address space and are connected to the same control block structure.

• Multiple concurrent RPLs are active against the same ACB using
asynchronous requests.

• Multiple RPLs are active against the same ACB using synchronous
processing with each requiring positioning to be held.

Refer to z/OS DFSMS Using Data Sets, SC26-7410, for more information on
multiple string processing.

In ESS, the PAV and Multiple Allegiance features implement I/O parallelism in the
same volume, within or among transactions.

2.7.5 Decreasing VSAM CPU time
The major theme of this section is to decrease the Tr(I/O) for VSAM I/O
operations, in order to decrease the response time of key transactions using
VSAM data sets. However, chances are that the enhancements introduced by
your changes may shift the bottleneck to the CPU side. You will find that:

� If you compress your VSAM data set, your transaction response time
decreases, which is good.

� If you stripe your VSAM data set, your transaction response time decreases,
which is also good.

� If you compress and stripe your VSAM data set, your response time gets
bigger (which is bad). The reason is that CPU is extremely busy, causing
huge CPU delays negating the I/O gains.
132 VSAM Demystified

VSAM buffering
The adequate use of buffering (mainly for direct access) may result in savings in
the CPU usage, as you can see in Table 2-16.

Increasing the number of buffers decreases the number of EXCPs, that is, the
number of executed I/O operations. In VSAM: one EXCP corresponds to one
SSCH and corresponds to one I/O operation. For the same amount of logic in
your code, the CPU time that you spend is a direct function of the number of
EXCPs. Because in our lab, the read data is not processed, we can say that:

� SRB time is caused by I/O interrupts (back end) processing.
� TCB time is the I/O operation preparation and buffer pool management.

It is clear that increasing the number of buffers means the management cycles
dominate the savings in the I/O operations. Refer to “Our test environment” on
page 396.

Table 2-16 NSR: Read sequential varying the number of buffers

Also, the use of better techniques to manage your buffer pool, such as BLSR or
system management buffers (SMB), can save enormous CPU cycles. See
Table 2-17, which shows data obtained from our lab.

Table 2-17 Direct access: benefits of using SMB: Reads and insertions

Data buffers Index buffers EXCPs SRB time
(seconds)

TCB time
(seconds)

Default=2 Default=1 167828 2.12 7.52

10 1 33568 0.53 3.99

30 1 11577 0.26 3.44

181 1 3476 0.19 3.86

SMB 4633 0.23 3.45

Ext format Buffering EXCPs connect time
(sec)

CPU time
(sec)

No Default 861744 123.5 52.46

No BLSR 330852 73.14 24.42

Yes SMB 280276 62.5 19.22

Gain using SMB (%) 68% 50 63
 Chapter 2. Performance 133

Use of extended format
The use of extended format data sets can save a consistent amount of CPU time
(TCB plus SRB). Consider the values shown in Table 2-18.

Table 2-18 Direct access: benefits of using SMB: Reads

Refer to 1.9, “Extended format data set” on page 28, for more information.

Compression
Compression of data can really increase the CPU time in your program.

� Track versus cylinder allocation

It is not true anymore that, when allocating VSAM data sets in cylinders, you
consume less CPU than using track allocation. Because, if the channel
program is crossing an extent boundary, it is informed about the correct
extents through the Define Extent CCW.

2.8 VSAM and ESS controllers
In the previous versions of this book, we made extensive tests with VSAM
clusters in order to measure how effective some VSAM features are. All of these
experiences were made on a ESS model F model. In this version of this book, we
change completely our I/O workload. However, we repeat two of those old
measurements (with the old I/O workload), just changing the type of channels
(from ESCON® to FICON) and using the new ESS model 800. The objective is to
compare the gains in VSAM by just changing the I/O hardware.

2.8.1 ESS model 800 enhancements
Before we show the results, we cover the new main enhancements of ESS model
800 Shark in order to correlate them with the measured results:

� More processor power

Model 800 offers 4 x 600 MHz processors per cluster (old model F20 it was 4
x 225 MHz per cluster). There is also a turbo feature implementing 6 x 668
MHz per cluster (our ESS is not a turbo).

Ext format Buffering EXCPs CPU time (sec)

No Default 794950 31.76

Yes SMB 102697 8.53

Gain using SMB (%) 87% 73%
134 VSAM Demystified

� Aggregate bandwidth

Model 800 allows 4.8 GB/second of aggregate bandwidth against 2.7
GB/second in model F20.

� Up to 64 GB of cache, formatted in 4 KB segments, so for small data blocks (4
KB and 8 KB are common database block sizes) minimum cache is wasted.
Our CI size is 4 KB.

� High performance 15,000 rpm disks drives. We did not use such disks in our
tests

� New CCWs. For the z/OS environments, the ESS supports channel command
words (CCWs) that reduce the characteristic overhead associated to the
previous (3990) CCW chains. Basically, with these CCWs, the ESS can read
or write more data with fewer CCWs. CCW chains using the old CCWs are
converted to the new CCWs whenever possible. The cooperation of z/OS
software and the ESS provides the best benefits for the application’s
performance.

2.8.2 Lab experiments
We repeated two runs, as we did in the previous version of this book. The first
one accessing sequentially and the second accessing randomly:

� Initial load with speed and SMB.

The results are shown in Table 2-19.

Table 2-19 Comparison initial load with ESS

As you can see, there is four times less connect time for almost the same
number of EXCPS. What Shark and FICON can do is to decrease the connect
time, and they did it. About the number of EXCPs depends on the number of
buffers. There is a decrease in CP time because we jump from a 9672 to the
z900 1C7.

� Direct access with SMB (inserts and updates)

Initial
Load

Extended
Format

EXCPs Connect
Time
(msec)

CPU Time
(sec)

Elapsed
Time (sec)

Shark - F YES 2341 21.5 2.7 27

Shark-800 YES 2401 5.6 1.81 10
 Chapter 2. Performance 135

Table 2-20 Comparison Direct access with ESS

The connect time per EXCP in the first run is 0.9 ms. The same figure in the
second run is 0.2 ms. So, the gain in connect was more than 8 fold. Note also
the decrease in the elapsed time.

2.9 Performance monitors
Follows a list of performance monitors, whose output can help you in solving
SMSVSAM performance problems.

2.9.1 Resource measurement facility
RMF product issues reports about performance problems as they occur, so that
your installation can take action before the problems become critical. Your
installation can be used RMF to:

� Determine that your system is running smoothly

� Detect system bottlenecks caused by contention for resources

� Evaluate the service your installation provides to different groups of users

� Identify the workload delayed and the reason for the delay

� Monitor system failures, system stalls, and failures of selected applications

RMF comes with three monitors, Monitor I, II and III.

� Monitor III with its ability to determine the cause of delay is where we start. It
provides short term data collection and online reports for continuous
monitoring of system status and solving performance problems. It allows the
system tuner to distinguish between delays for important jobs and delays for
jobs that are not as important to overall system performance

� Monitor I provides long term data collection for system workload and resource
utilization. The Monitor I session is continuous, and measures various areas
of system activity over a long period of time.

You can get Monitor I reports directly as real-time reports for each completed
interval (single-system reports only), or you let run the Postprocessor to
create the reports, either as single-system or as sysplex reports. Many

SMB EXCPs Connect
Time (sec)

CPU Time
(sec)

Elapsed
Time (sec)

Shark - F YES 79,741 75 11.04 150

Shark-800 YES 28,405 6 3.99 7
136 VSAM Demystified

installations produce daily reports of RMF data for ongoing performance
management. Sometimes a report is called a Monitor I report (for example,
the Workload Activity report) although it can be created only by the
Postprocessor.

� Monitor II provides online measurements on demand for use in solving
immediate problems. This Monitor II session can be regarded as a snapshot
session. Unlike the continuous Monitor I session, a Monitor II session
generates a requested report from a single data sample. Since Monitor II is
an ISPF application, you might use Monitor II and Monitor III simultaneously
in split-screen mode to get different views of the performance of your system.

In addition, you can use the Spreadsheet Reporter for further processing the
measurement data on a workstation by help of spreadsheet applications. The
following chapters provide sample reports including the name of the
corresponding macro.

2.9.2 Tivoli Decision Support (TDS)
TDS is product contained in Tivoli® Information Management for z/OS suite of
products.

Tivoli Information Management for z/OS is a process automation tool that
delivers Systems Management Services, including Incident, Problem, Change
and Asset management applications, for your end-to-end managed environment.

With TDS you can also have immediate access to key enterprise information
about performance and capacity, stored in a DB2 database. TDS provides
ready-to-use views and reports, so that you can identify key problems. You can
design your own reports and views through the use of SQL language easy code.

Information viewed with TDS can be published on a Web site, or as an
information ticker that streams across the user’s desktop if your company uses
broadcast tools. Users can then check the information before calling their internal
help desk to report a problem.

2.9.3 Generalized Trace Facility (GTF)
GTF is an MVS component able to capture very detailed information about
events occurring in the system. Among those events, we have: SSCHs and I/O
interruptions. If you have a complex VSAM DASD I/O performance situation, you
may run GTF with CCW trace option as shown in the “REXX code to list
compression ratio” on page 384. When you can use IPCS to format the data
produced by GTF or you may use a home made product.
 Chapter 2. Performance 137

For example, we use GTF data to calculate in our lab the total connected time
associated to one data sets.
138 VSAM Demystified

Chapter 3. VSAM problem
determination and recovery

In this chapter we provide some general tips on VSAM problem determination.
We then go through a number of common VSAM problems and explain how to
recover from them. We then follow with some suggestions to avoid problems and
then we point you to some useful documentation that will assist you with your
problem determination and recovery.

The topics cover:

� VSAM problem determination hints and tips
� Some common VSAM problems
� What documentation to collect
� How to recover a damaged VSAM data set
� Prevention is better than cure
� Where to look for more information
� IDC3009I message
� IDCAMS LISTCAT output fields

3

© Copyright IBM Corp. 2001, 2003. All rights reserved. 139

3.1 VSAM problem determination hints and tips
In the complex environment of computing today, users have an array of tools and
disciplines at their disposal to aid problem determination and recovery of VSAM
spheres and data sets. z/OS writes numerous records like SMF, LOGREC and
syslog that can be used to debug a problem and recover data.

You may have heard user comments like these:

� Everything was working yesterday; we haven’t changed anything since then.

� We are starting to get strange error messages, and the explanations in the
manual are meaningless.

� We cannot access the data, and do not know where to turn for help.

Your data is one of the most valuable assets of your business. The challenge, in
order to save your data, is to use all the error information available to answer
these three questions:

� What caused this problem?
� How you can recover your data?
� What you can do to avoid these problems in the future?

In this section we will give you some general tips on what to look for and how to
determine what caused the problem and how to recovery from a problem.

3.1.1 How to check your VSAM data set
A number of IDCAMS commands are available to check your VSAM data sets.

EXAMINE
You can use the EXAMINE IDCAMS command to analyze and report on the
structural integrity of the index and data components of a key-sequenced data
set cluster (KSDS) and of a variable-length relative record data set cluster
(VRRDS). Any problems with the VSAM data set will be reported by one of the
IDCxxxxx messages. Look in MVS System Messages, Volume 3 (GDE - IEB) for
the explanation for these messages.

The EXAMINE command is described in detail in “EXAMINE command” on
page 165.

VERIFY
The VERIFY command causes a catalog to correctly reflect the end of a VSAM
data set after an error occurs while closing a VSAM data set. The error might
140 VSAM Demystified

have caused the catalog to be incorrect. For details of this command refer to
“VERIFY command” on page 166

DIAGNOSE
The DIAGNOSE command can be used to scan a basic catalog structure (BCS)
or a VSAM volume data set (VVDS) to validate the data structures and detect
structure errors. See “DIAGNOSE command” on page 166 for more details.

DFSMSdss PRINT command
With the PRINT command, you can print:

� A single volume non-VSAM data set, as specified by a fully qualified name.
You must specify the volume where the data set resides, but you do not need
to specify the range of tracks it occupies.

� A single-volume VSAM data set component (not cluster). The component
name specified must be the name in the VTOC, not the name in the catalog.

� Ranges of tracks.

� All or part of the VTOC. The VTOC location need not be known.

LISTCAT
You can list the catalog entries using the LISTCAT command. It is described in
“IDCAMS LISTCAT output fields” on page 187.

3.1.2 z/OS system messages
OS/390 components issue messages with the IEA prefix, associated with data
set allocation, master scheduler functions, and RTM. The IOS prefix is for IOS
functions. Usually those messages follow abends:

� IEC070I — RC32, RC202, RC104, or RC203

� IOS000I — Command reject (IOS errors in general)

3.1.3 Catalog Search Interface IGGCSIVS program
This Catalog Search Interface (CSI) produces a list of data set names defined in
a given catalog that reside on a specific volume. Refer to 4.5, “Catalog Search
Interface” on page 231, for more information.
 Chapter 3. VSAM problem determination and recovery 141

3.1.4 System LOGREC messages
Often the system will recover from a problem and so will be transparent to you;
but it will generate error records in the LOGREC. If you suspect a problem
LOGREC may give you some valuable information.

3.1.5 GTF CCW traces
You can collect GTF CCW traces to get detailed information on I/Os to VSAM
data sets. These traces can be formatted using IPCS. For sample JCL to collect
a GTF trace refer to Example 3-6, “Sampler JCL for GTF trace” on page 165.

3.1.6 DITTO/ESA output
This utility can be used to browse VSAM records. For details, refer to
“DITTO/ESA” on page 35

3.1.7 What can you get from the SMF records?
You can get a lot of information from SMF record types 60 to 69 to analyze VSAM
problems. SMF record type 42 contains information on VSAM RLS statistics.
Refer to 3.9, “SMF record types related to VSAM data sets” on page 194 for
detailed information on these SMF records. You can use our SMF 64 sample
program as described in that topic.

3.2 Some common VSAM problems
Here we describe some problems which may affect the processing and the
existence of your VSAM data sets. To simplify our search for a solution to each
problem, we can use the three “Whats”, for example, occurrence, recovery, and
avoidance.

In each subsection we cover the three “Whats”:

� What happened to cause this problem?
� What must you do in order to recover your data now?
� What must you do to avoid this problem in the future?

Broken data sets can be caused by many different circumstances, including user
errors. When diagnosing these types of problems, the first thing that must be
done is to identify what is actually wrong with the data set. The first sign of a
problem is the VSAM or the z/OS system messages. A single error can often
generate numerous messages. You should focus your attention on the return
code presented and the companion explanation. This return code will be the one
142 VSAM Demystified

passed by the system component that first encountered the error. In most cases,
you will need additional documentation; refer to 3.3, “What documentation to
collect” on page 162.

In this section we group the errors by categories. However, this is not an easy
task. Some of the categories overlap and even interact with others. For example,
a bad channel program may be caused by an improper sharing, which caused a
structural damage.

3.2.1 Lack of virtual storage
The following messages may indicate a lack of virtual storage:

� IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

– 136 (Close): Not enough virtual storage was available in the program's
address space for a work area for Close.

– 132 (Open): One of the following errors occurred:

• Not enough storage was available for work areas.
• The format-1 DSCB or the catalog cluster record is incorrect.

– 136 (Open): Not enough virtual storage space is available in the program's
address space for work areas, control blocks, or buffers.

– 40 (I/O): Insufficient virtual storage in the user's address space to
complete the request.

� IEC161I 001 [(087)]-ccc,jjj, sss,ddname,dev,ser,xxx, dsname,cat

What happened?
Due to the lack of virtual storage, an abend occurs. In this case, a symptom
dump may be included.

What to do for recovery?
Because the data set processing was interrupted (abended) in apparently
unknown circumstances, there are two cases:

� VSAM data set is being accessed by a subsystem as CICS, then CICS was
doing the synchpoint, journaling, and is able to recover your data by rolling it
back.

� VSAM data set being accessed by your program; then you should correct the
virtual storage problem and re-run the program (if possible) or restore the
backup and re-run the job.

Sometimes, the message is not the result of an abend. It can be an alert as with
IEC161I, where BLDVRP macro indicates that there was not enough virtual
 Chapter 3. VSAM problem determination and recovery 143

storage to satisfy the request done by System Management Buffering (SMB).
SMB gets the available storage, and processing goes on.

What to do to avoid future problems?
Initially, read 2.6.12, “Region size” on page 61. If possible, increase your region
below or above, or decrease the common area below 16 MB, or force your
software to be in R31 mode.

Determine if the VSAM buffers and their control blocks are below or above the 16
MB line. If below, read “Locating VSAM buffers above 16 MB” on page 81 to learn
how to move them above with integrity.

3.2.2 Initial loading problems
The following messages may indicate initial load problems:

� IDC3308I ** DUPLICATE RECORD xxx

The output data set of a REPRO command already contains a record with the
same key or record number.

� IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

– 8 (I/O): You attempted to store a record with a duplicate key, or there is a
duplicate record for an alternate index with the unique key option

– 12 (I/O): You attempted to store a record out of ascending key sequence in
skip-sequential mode; record had a duplicate key; for skip-sequential
processing, your GET, PUT, and POINT requests are not referencing
records in ascending sequence; or, for skip-sequential retrieval, the key
requested is lower than the previous key requested. For shared resources,
the buffer pool is full.

– 116 (I/O): During initial data set loading (that is, when records are being
stored in the data set the first time it is opened), GET, POINT, ERASE,
direct PUT, and skip-sequential PUT with OPTCD=UPD are not allowed.
During initial data set loading, for initial loading of a relative record data
set, the request was other than a PUT insert.

What happened?
These messages point to problems with initial load or mass insertion (also called
skip sequential) of a VSAM cluster.

Initial load of your data set can be done by IDCAMS REPRO or by a program of
yours. Refer to 2.6.11, “Initial load option” on page 59, for more information.

When loading a VSAM KSDS data set, the logical records must be sorted in a
key sequenced order. No out-of-sequence or duplicated keys are allowed. Refer
144 VSAM Demystified

to the above messages for a more detailed explanation about which of these
requirements were not fulfilled.

If the duplicated keys message applies to the initial load of an alternate index
(AIX) cluster, remember that for AIX is possible to have duplicated keys, but in
this case you should not use the UNIQUE parameter, which would definitely
cause this error.

Mass insertion resembles initial load in the sense that all the added logical
records also need to be sorted by a key field. The difference is that in mass
insertion, we are loading sequentially logical records to a data set which already
has previous data.

What to do for recovery?
Here, there is not a need for recovery. Your data is saved in the input file. It is a
matter of sorting and re-running the program.

What to do to avoid future problems?
After correcting the error, introduce a procedure in production to avoid having the
same error again.

3.2.3 Mismatch between catalog and data set
The following error messages may indicate a mismatch between catalog and
data set information:

� IDC3351I ** VSAM OPEN RETURN CODE IS 108

108: Attention message: the time stamps of a data component and an index
component do not match. This indicates that either the data or the index has
been updated separately from the other. Check for possible duplicate VVRs.

� IDC3351I DATA SET IS ALREADY OPEN FOR OUTPUT OR WAS NOT CLOSED
CORRECTLY

� The data set is already OPEN for output by a user on another system, or was
not previously closed.

� IDC11709I DATA HIGH-USED RBA IS GREATER THAN HIGH-ALLOCATED RBA

The data component high-used relative byte address is greater than the
high-allocated relative byte address. Supportive messages display pertinent
data, and processing continues.

� IDC11712I DATA HIGH-ALLOCATED RBA IS NOT A MULTIPLE OF CI SIZE

The high-allocated relative byte address is not an integral multiple of the
control interval size.
 Chapter 3. VSAM problem determination and recovery 145

� IDC11727I INDEX HIGH-USED RBA IS GREATER THAN HIGH-ALLOCATED RBA

The index component high-used relative byte address is greater than the
high-allocated relative byte address.

� IDC3350I synad[SYNAD] NO RECORD FOUND from VSAM

What happened?
The data set may be intact, but the catalog information describing the data set
mismatch problems. It sometimes results in an open failure.

The most common discrepancies between the catalog and cluster are these:

� There were different time stamps between index and data components.

� HURBA and HARBA not correctly updated, mainly caused by an abend,
without a normal close.

� Open-for-output bit on for a closed cluster; mainly caused by an abend,
without a normal close, or other task accessing from other system. Refer to
3.4.5, “Abend task scenario” on page 171, for more information.

� RBAs fields in the VVR do not match the data set attributes, for example:

– If the RBA of the high-level index CI is corrupted, you are not be able to
perform direct requests against the data set.

– If the RBA of the sequence set index CI is corrupted, you are not able to
perform sequential access.

These last two discrepancies are not covered here; refer to 3.2.6, “Structural
damage” on page 150.

A LISTCAT output (or CSI report) can help with the documentation for problem
determination.

What to do for recovery?
IDCAMS VERIFY is a requirement in this type of problem. In this case, VERIFY
can correct HURBA and verify the open-for-output bit.

� Different time stamps; Open does not abend your task, so continuation or
abend of the application depends on the program that issues the OPEN. In
general, it will keep processing, but another problem is likely to occur.

We suggest you run VERIFY (to be sure and document the mismatch) and
then run EXAMINE to guarantee no structural damage exists for KSDS and
VRRDS, with a test for the index option only (INDEXTEST).

Completion of EXAMINE without error proves that there are no structural
damages. If the index component shows damage at this point, it must be
restored before further use. Refer to 3.4.4, “Broken Index scenario” on
146 VSAM Demystified

page 169, to get some information on doing that. Note that EXAMINE may
provide messages containing only informational data that may not require
restoring the cluster.

� HURBA and HARBA not correctly updated.

If the HURBA is not updated, when the data set is subsequently opened and
the user's program attempts to process records beyond end-of-data or
end-of-key range, a read operation results in a “no record found” error, and a
write operation might write records over previously written records. To avoid
this, you can use the VERIFY command which corrects the catalog
information.

� Open-for-output bit on for a closed cluster.

At next OPEN, VSAM implicitly issues a VERIFY command, when it detects
an open-for-output indicator on and issues an informational message (maybe
the one that you are seeing) stating whether the VERIFY command is
successful.

If a subsequent OPEN is issued for output, VSAM turns off the
open-for-output indicator at successful CLOSE. If the data set is opened for
input, however, the open-for-output indicator is left on.

3.2.4 Hardware errors
Messages that indicate hardware errors include:

� IOS000I dev,chp,err,cmd,stat, dcbctfd,ser,mbe,eod, jobname,sens text

The system found an uncorrectable I/O error in device error recovery. Text is
one of the following types:

– Channel interface, or protocol error
– Device has exceeded long busy timeout
– Permanent error — volume fenced
– Permanent error — device reported unknown message code = cde
– Channel control, data, chaining, program, protection, interface check
– Unable to obtain sense data from the device

� IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

– 184 (Open): An uncorrectable I/O error occurred while VSAM was
completing outstanding I/O requests.

– 246 (Close): The compression management services (CMS) close
function failed.

– 184 (Open): An uncorrectable I/O error occurred while VSAM was
completing an I/O request.
 Chapter 3. VSAM problem determination and recovery 147

– 245 (I/O): A severe error was detected by the compression management
services (CMS) during compression processing).

– 246 (I/O): A severe error was detected by the compression management
services (CMS) during decompression processing.

– 250 (I/O): A valid dictionary token does not exist for the compressed data
set. The data record cannot be decompressed.

What happened?
Hardware I/O errors usually mean that the I/O hardware (channel, controller,
device) had a problem executing that I/O. For compressed VSAM data sets, you
may have hardware problems with the CPU compression assist function.

The first thing to do is break down the message to get more details on the error.
An IDCAMS LISTCAT (if possible) of the data set is also helpful to give the
attributes of the file in the logical 3390/3380, such as: the physical record size,
the device type and the CCHH of all extents. LOGREC output is also valuable. A
GTF CCW trace may be necessary to run DIAGNOSE on the problem, however,
for such tools, you may need to recreate the situation.

VERIFY IGGCSIVS is a program from SYS1.SAMPLIB accessing Catalog
Search Interface (CSI) which produces a list of data set names defined in a given
catalog that reside on a specific volume. Such a list might be helpful in a recovery
situation affecting that volume.

When accessing with VSAM macros, a VSAM data set where a physical error
was detected, the register 15 comes with return code equal to 12.

What to do for recovery?
In the case of a media error, do not use ICKDFS to run an Analyze and Inspect
function. The characteristics of the physical devices that make up the RAID
devices family do not allow the use of the ICKDSF commands that perform
installation, media maintenance and problem determination functions, such as
Install, Analyze, and Inspect.

If the problem happens with the compress assist feature, run the program again,
switching off data compression in the data class.

What to do to avoid future problems?
If the error is in the DASD controller, keep a log of such type of occurrences to
force a better quality of the manufacturer or change to other. Another solution (for
some media problems) is to implement RAID-1 dual copy (in the same controller)
or remote copy (in two controllers), mainly for your most critical data, such as
logs.
148 VSAM Demystified

3.2.5 Bad data or bad channel program
The following message may indicate bad data or bad channel program:

IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

� 140 (Open): The catalog indicates this data set has an incorrect physical
record size.

� 16 (I/O): Record not found.

� 88 (EOV): A previous extend error has occurred during EOV processing of the
data set.

What happened?
This problem may be pervasive, but in general, it is usually caused by two major
reasons:

� Duplicate VVRs
� A bad channel, causing data overlays and corrupting indexes

The existence of damaged or duplicate VVRs on a volume may cause data sets
to be overlaid with data from other data sets.

VSAM volume record (VVR) is a logical record within VSAM volume data set
(VVDS). VVDS is a data set that describes the dynamic characteristics of VSAM
and system-managed data sets residing on a given DASD volume. Together with
the BCS, it is a part of an integrated catalog facility.

There are many things that can cause the channel program to be bad. The most
common causes of a bad channel program is that the data that describes the
data set is bad. If a bad VVR is picked up at Open time, VSAM may try to access
cylinder and tracks that do not belong to the data set getting various I/O errors.

If another program overlays the VSAM data set, this can cause the channel
program to fail at that spot where the other data exists. For instance, if the CI size
of the VSAM file that is broken is 4 KB, the channel program is built to read
records of that size. If another program has overlaid the file with records of, say,
16 KB size, the channel programs for the record size of 4 KB fails on all
cylinder/tracks/heads that do not have this record size. This situation is usually
referred to as bad data.

Theoretically, system code problems can cause VSAM to build channel program
incorrectly, or in some cases they may be built correctly, but they are getting
modified incorrectly and redriven by ERP or even third party products. Luckily,
these reasons are not too common, even with new device types.

In regard to corrupted indexes, refer to 3.2.6, “Structural damage” on page 150.
 Chapter 3. VSAM problem determination and recovery 149

With problems like these, it is important to get as much information about the
data set as you can before the customer restores it. We suggest using:

� LISTCAT or CSI.

� DFSMSdss (PRINT command) or Ditto to print the 3390/3380 logical
cylinder/track/head that the I/O error is occurring. It can indicate whether
there is any data at all on the track, or if the data that is there belongs to a
different data set.

� SMF records, mainly the type 6x connected to catalog and VSAM data sets.

After the data set has been recovered, the only “history” that can be EXAMINEed
is the SMF records. If the problem “clears up” after the data set is closed, but
without the data set being recovered, you might suspect a problem with an
internal control block being overlaid, rather than something on DASD.

What to do for recovery?
This overlay is a hard failure and the data set has to be manually restored from a
backup. Often, in this case, the bad data itself gives a clue as to what data set or
application has caused the overlay. Trying to avoid the restore for a bad KSDS
data component, you may try to skip past the bad data records, and recover only
those records that can be properly read.

A DIAGNOSE command even after the data set has been recovered can check
for this problem (since only a DELETE VVR can get rid of an orphan after one
occurs). Luckily, many enhancements have been introduced to Catalog and
Open processes in the last few years to check for duplicate VVRs at OPEN time,
so this should be less of a problem.

What to do to avoid future problems?
Experience has shown that the majority of such errors are caused by improper
sharing. If you are sharing your VSAM data set, refer to 3.2.7, “Improper sharing”
on page 153.

Because such types of errors may also be caused by system errors, you may
want to investigate the possibility of APARs and PTFs related to the problem.

3.2.6 Structural damage
The following message may indicate structural damage:

IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

� 128 (Close): Index search horizontal chain pointer loop encountered.

� 190 (Open): An incorrect high-allocated RBA was found in the catalog entry
for this data set. The catalog entry is bad and will have to be restored.
150 VSAM Demystified

� 76 (Open): Attention message: The interrupt recognition flag (IRF) was
detected for a data set opened for input processing. This indicates that
DELETE processing was interrupted.

� 4 (I/O): End of data set encountered (during sequential retrieval), or the
search argument is greater than the high key of the data set. Either no
EODAD routine is provided, or one is provided and it returned to VSAM and
the processing program issued another GET.

� 32 (I/O): An RBA specified that does not give the address of any data record
in the data set

� 128 (I/O)): A loop exists in the index horizontal pointer chain during index
search processing.

� 144 (I/O): Incorrect pointer (no associated base record) in an alternate index.

� 156 (I/O): An addressed GET UPD request failed because the control interval
flag was on, or an incorrect control interval was detected during keyed
processing. In the latter case, the control interval is incorrect for one of the
following reasons:

– A key is not greater than the previous key.
– A key is not in the current control interval.
– A spanned record RDF is present.
– A free space pointer is incorrect.
– The number of records does not match a group RDF record count.
– A record definition field is incorrect.
– An index CI format is incorrect (logical I/O error)

What happened to cause this problem?
KSDS or VRRDS VSAM data set organizations can “break” in more ways than
other data sets, because they have an index component with logical pointers to
other data and index CIs. If these pointers become corrupted, data can be lost or
duplicated.

Also, much structural information about such data sets is located in the ICF
catalog. For example, two RBA fields in the VVR are very important in accessing
a KSDS data set, for example:

� If the RBA of the high-level index CI is corrupted, you are not be able to
perform direct requests against the data set.

� If the RBA of the sequence set index CI is corrupted, you are not able to
perform sequential access.

Refer to 3.8, “IDCAMS LISTCAT output fields” on page 187, for more information
about RBA data in the VVDS catalog.
 Chapter 3. VSAM problem determination and recovery 151

Then, if these fields are corrupted, errors may prevent you from accessing the
data even though the data is intact. Also, it is possible that the index CI’s
horizontal chain is destroyed, inhibiting the access to the data. One common way
these fields can get corrupted is due to overlays of the AMDSB control block
while the data set was open, which then get updated back to the VVDS at close
time. Another way is through improper sharing of the data set during initial load
mode processing.

Because these fields are stored in the ″Statistics Block″ (AMDSB), jobs that only
opened the data set for input still update this information at close time and for
that reason do not dismiss any possibilities just because the job was not updating
the file.

SMF records are very helpful when diagnosing VVR damage. By investigating
the SMF records (for example, type 60, 62 and 64) from all systems, improper
access of the data set can be identified as well as the time frame of the
corruption.

What to do for recovery?
When dealing with KSDS/VRRDS, it is crucial that EXAMINE is run on the data
set as part of the diagnosis. Also, the sooner the EXAMINE is run after the data
set is broken, the better, since some types of damage can actually cause more
breakage until the data set is so badly broken it is impossible to tell what actually
happened first. Remember that the EXAMINE command provides details about
the nature of data set damage.

Sometimes, the IDCAMS DIAGNOSE command can be used to check the data
set for structural error in the catalog itself.

When losing the index in a KSDS/VRRDS, one possible recovery path is to read
the data (in physical sequential mode) via its data component. Here you may use
an assembler program (MACRF=ADR in ACB and OPTCD=ADR in RPL), or by
IDCAMS Repro. Then, classify by the key and use an IDCAMS Define and
REPRO to recreate the KSDS. Refer to 3.4.4, “Broken Index scenario” on
page 169 for more details.

What to do to avoid future problems?
Experience has shown that some of such errors are caused by improper sharing.
If you are sharing your VSAM data set, refer to 3.2.7, “Improper sharing” on
page 153.

Because such types of errors maybe caused by system errors, you may want to
investigate the possibility of APARs and PTFs related to the problem.
152 VSAM Demystified

3.2.7 Improper sharing
The following message may indicate improper sharing:

� IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

– 16 (I/O): Record not found.

– 20 (I/O): Record already held in exclusive control by another requester.

– 28 (I/O): Data set cannot be extended because VSAM cannot allocate
additional DASD space.

– 88 (Open): A previous extend error has occurred during EOV processing
of the data set.

– 96 (Open): Attention message: an unusable data set was opened for input.

– 116 (Open): Attention message: the data set was not properly closed or
was not opened. If the data set was not properly closed, then data may be
lost if processing continues. The data set was not properly closed.

– 236 (I/O): Validity check error for SHAREOPTIONS 3 or 4.

� IDC11705I INDEX RECORD CONTAINS DUPLICATE INDEX POINTERS
pointer-value

What happened?
Improper sharing is one of the most common causes of broken data sets. This
section covers some of the things to check for, to make sure the share options
are proper. Refer to “VSAM SHAREOPTIONS” on page 223, for information on
share options. Here are some causes of sharing problems:

� Sharing a data set across regions (cross-region) or across systems
(cross-system) without using proper enqueuing procedures to protect data set
integrity. For shareoptions shr(3 3) shr(4 3) shr(3 4) see related information in
OY36328.

� Sharing a data set across systems — even using the appropriated share
option — but without propagating ENQ name SYSVSAM around the GRS
ring. This is the *most* common user error. It results in duplicate index
pointers in the high level index records. See message IDC11705I.

� When a data set is defined using the model parameter, and the original data
set has SPEED as an attribute of the index, data set damage can occur.
VSAM does not support speed as an attribute for the index (speed is only
supported for the data).

� Another area related to broken data sets that is specific to CBUF processing
is the VSI control block. Every time a data set is opened on a system for
CBUF processing, a VSI is built for the data set and added to the VSI chain.
This control block is then updated by the user to communicate information
 Chapter 3. VSAM problem determination and recovery 153

from one region to another. If the user does this improperly, a broken data set
can result. Refer to 4.3.6, “Protecting VSAM data set through DISP
parameter” on page 227, for more information.

Documentation is of paramount importance to address sharing problems. The
necessary documents should be obtained at each system (or address space)
accessing the troubled data set. The major document needed here is the
IDCAMS LISTC or CSI report. List the catalog entry for the affected data set to
show the allocation and RBA data (beware OY61232).

The SMF 62 and 64 records can help you determine if the users have the data
set open for output from different applications at the same time. A common user
error in this area is applications or ISV products that were not intended to be run
from multiple systems (and so they have no logic to serialize updates), but the
customer is using them in this manner.

What to do for recovery?
Here is a list of recovery options:

Use the Access Method Services VERIFY command to attempt to close the data
set properly. In a cross-system shared DASD environment, the ACBERFLG =
116 may mean the data set was not properly closed. The warning "data set not
properly closed" may indicate an error in a VSAM data set. It may mean one of
the following:

� The "end of the data set" indicators (data set high-used RBA/CI) and so on)
may be invalid.

� There may be missing records.

� There may be duplicate records.

� The data set statistics fields in the catalog may be invalid.

If VSAM OPEN cannot successfully do a VERIFY then a user cannot do a
VERIFY either.

� Execute the IDCAMS EXAMINE command on the data set. Completion of
EXAMINE without error proves that damage did not occur in a previous job. If
the data set shows damage at this point, it must be restored before further
use.

� Proceed with the application job execution.

� Execute IDCAMS EXAMINE on the data set when the job completes.

� If damage to the cluster has occurred, run EXAMINE on SMF records from all
systems which do have the ability to access the DASD volume. If shared
access to the data set has occurred, correct or eliminate the contention for the
data set.
154 VSAM Demystified

What to do to avoid future problems?
You should issue the VERIFY command every time you open a VSAM cluster
that is shared across systems or address spaces. Read carefully 4.3, “Sharing
VSAM data sets” on page 212 and use all the serializing techniques to avoid the
structural damage and the data integrity of your data set.

3.2.8 Mismatch between catalog and VTOC
In this book we do not cover much catalog recovery; however, some of the
catalog problems are mentioned as the ones associated with the IDC3009I
message. Refer to 3.7, “IDC3009I message” on page 181, where a more detailed
description of the return and reason codes from this message are presented.

IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

– 132 (Open): One of the following errors occurred:

• Unable to read JFCB or Scheduler Work Block
• Unable to connect to redo log during DFSMStvs open
• The forward recovery log associated with the data set was altered.
• DFSMStvs failed to write a record to the forward recovery log.
• Caller TASK cancelled
• The data set is in a forward recovery required state.

� IDC3009I VSAM CATALOG RETURN CODE IS return-code — REASON CODE IS
IGGOCLaa — reason-code

3.2.9 VSAM does not produce expected output
Incorrect output failures can be identified by the following results:

� Expected output is missing.
� Output is different than expected.
� Output should not have been generated.
� System indicates damage to the VTOC or VTOC index.
� ISMF panel information or flow is erroneous.

Incorrect output can be the result of a previous failure and can often be difficult to
analyze because the component affected might not be the one that caused the
problem. Review previous messages, abends, console logs, or other system
responses. They could indicate the source of the failure.

Accumulating as much information as possible
It can help you isolate or resolve your problem, and the IBM Support Center will
request it if trap or trace information is needed, such as the following.

� When was the problem first noticed?
 Chapter 3. VSAM problem determination and recovery 155

� How was the problem identified (good output versus bad output)?

� Were any system changes or maintenance recently applied? For example, a
new device, software product, APAR, or PTF?

� Does the problem occur with a specific data set, device, time of day, and so
forth?

� Does the problem occur in batch or TSO mode?

� Is the problem solid or intermittent?

� Can the problem be re-created?

� EXAMINE the system and console logs for failure-related abends, messages,
or return codes. A damaged VSAM data set can also cause incorrect output.

� Add any failure-related return codes to the keyword string, exactly as the
system presents them. You can also add the abend or message
type-of-failure keywords to the incorrect output keyword string to define the
symptoms more closely:

� Determine whether failure-related record management return codes and
reason codes exist.

VSAM provides return codes in register 15 and reason codes in either the
access method control block (ACB) or the request parameter list (RPL).
Reason codes in the ACB indicate VSAM open or close errors. Reason codes
in the RPL indicate VSAM record management error indications returned to
the caller of record management. Reason codes returned to the caller of
record management in the RPL indicate VSAM record management errors.

� Determine whether you have a damaged VSAM data set.

Some incorrect output failures involve a damaged VSAM data set. To
determine whether you have a damaged data set, use the IDCAMS
EXAMINE command as described in the chapter on functional command
format in DFSMS/MVS Access Method Services for ICF and the chapter on
checking a VSAM key-sequenced data set cluster for structural errors in
DFSMS/MVS Using Data Sets. The EXAMINE command provides details
about the nature of data set damage. If these service aids indicate that the
data set is not damaged, inform the IBM Support Center if you call for
assistance. If they indicate that the data set is damaged, keep a copy of the
output for possible use by the IBM Support Center. Be prepared to describe
the type of data set damage. You should attempt to recover the data set and
rerun the failing job to determine whether the problem is resolved.

3.2.10 VSAM RLS problems
This is described in 5.5, “RLS problem determination and recovery” on page 266
156 VSAM Demystified

3.2.11 VSAM and DFSMStvs considerations
Refer to Chapter 6, “DFSMStvs” on page 323.

3.2.12 OEM problems
Overlay of control blocks, abends, loops, deadlocks and performance problems
can occur due to errors in the use of VSAM data sets. A large number of
problems have been reported by many IBM products and non-IBM products that
use VSAM data sets. These problems are described in a number of information
APARs in IBMLINK. At the time of writing this book, 270 problems have been
documented in these APARs as follows.

� II10001 - Problems 1-60
� II11013 - Problems 61-104
� II11513 - Problems 105-157
� II12140 - Problems 158-200
� II12615 - Problems 201-238
� II13278 - Problems 239-270

3.2.13 Enqueue issues
OPEN message IEC161I 052-084 is a common informational message. Most
often it simply means that another job already has the dataset open when this job
is trying to open it. As it usually indicates a scheduling problem rather than a
system problem. In this section we provide information on how to determine what
jobs are in contention for the same dataset.

 VSAM OPEN processing determines this condition by checking the GRS data.
Depending on the shareoptions (SHR) of the dataset, and the attributes of the
OPEN, VSAM will enqueue against major name SYSVSAM with a minor name of
the dataset name/catalog name plus other information. Thus, GRS is the
mechanism OPEN processing uses to insure serialization of the OPEN process
itself as well as the shareoptions of the file.

When VSAM issues an ENQUEUE for a SYSVSAM resource, VSAM will add an
ENQRNIND indicator to the wanted resource name:

� ENQRNIND = B = BUSY
� ENQRNIND = I = INPUT
� ENQRNIND = N = Non RLS Open
� ENQRNIND = O = OUTPUT
� ENQRNIND = R = RESERVE
� ENQRNIND = S = Sphere
� ENQRNIND = C = CLOSE
� ENQRNIND = R = RLS Read
 Chapter 3. VSAM problem determination and recovery 157

� ENQRNIND = W = RLS Write

 The ENQ for BUSY will be held throughout the period of the initial operation
being performed, that is, OPEN, EOV, CLOSE, TCLOSE or CHECKPOINT
RESTART. When the operation is complete or is failed, then, the 'B' resource will
be dequeued. Example:

� ENQ DATASET/CAT/B (OPEN) EXCLUSIVE
� ENQ DATASET/CAT/O
� DEQ DATASET/CAT/B (process data)
� ENQ DATASET/CAT/B (CLOSE) EXCLUSIVE
� DEQ DATASET/CAT/O
� DEQ DATASET/CAT/B

The first place to look to determine which job is enqueued on the dataset is GRS
data. You can view this data with the DISPLAY GRS command or through a
monitor program. Look at both the global and local queues under the major name
of SYSVSAM for the dataset that is getting the OPEN failure. Unfortunately, the
GRS data is transient and may well change before you can find the job that was
responsible for the message, but, do try the GRS command. Issue this GRS
command from all systems that can share the DASD:

D GRS,RES=(SYSVSAM,*)

The next place to look is the console log. You may be able to determine if there
were any backups/copies/dumps being taken at the time or even if there were
unexpected batch jobs running at the time.

Another place to look for information is the SMF type 62 (SMF62) and SMF64
records. This will show what jobs were accessing the dataset at the time of the
error. This also may not be conclusive since some access of the dataset will not
produce SMF records (that is, Media Manager, DB2, DFSMS/dss).

Ensure the availability of the resource by means of JCL DD statements. This
means, check your JCL and ensure that you have requested the proper
disposition, that is, DISP=SHR.

Use the AMS command ALTER, to reset the Update Inhibit indicator in the data
set's catalog record then, rerun the job. This means, run LISTC against the failed
cluster, check for an attribute of INH-UPDATE. If found ON, then this dataset is in
READONLY mode and will fail an OPEN for UPDATE request. Use the AMS
command 'ALTER UNINHIBIT' to place the file in READ/WRITE mode, then,

Note: If you are using IPCS to view GRSDATA remember that SYSVSAM will
be there twice, once for Local System Resources and a second time for
Global Systems Resources.
158 VSAM Demystified

rerun the job. Example 3-1 shows a sample job for Cluster DFP1.JIMONE.KSDS
(on a D/T3390 with volser=339000).

Example 3-1 Sample AMS JCL

//SYSIN DD *
 PRINT INDATASET(SYS1.VVDS.V339000) DUMP
 ALTER DFP1.JIMONE.KSDS.DATA UNINHIBIT
 ALTER DFP1.JIMONE.KSDS.INDEX UNINHIBIT
 VERIFY DATASET(DFP1.JIMONE.KSDS)
 LISTC ENT(DFP1.JIMONE.KSDS) ALL
 /*

In a VSAM catalog, INHIBIT UPDATE bit is in the BCS DINC record. In an ICF
catalog, INHIBIT UPDATE bit is in the VVDS VVR record.

If you are NOT able to determine what job is the cause of the IEC161I message,
open a problem record with the Support Center and include your RMID of
IDA0192B. You will be given a SLIP to capture a dump (which includes the
GRSQ data) at the time the message is issued.

The SLIP will be set in CSECT IDA0192B of load module IDA0192A upon entry
to a procedure named, PROBDT2B. IBM will need to know the PTF level of
IDA0192B in order to resolve the offset of xxx in the SLIP. The user will need an
AMBLIST of IDA0192A. A sample of the slip is shown in Example 3-2.

Example 3-2 SLIP to determine the job causing IEC16I

SLIP SET,IF,A=SYNCSVCD,L=(IDA0192A,xxx),DATA=(13R?+F8,EQ,34),
 SDATA=(ALLNUC,CSA,GRSQ,LPA,LSQA,RGN,SQA,SUM,TRT),END

IDA0192B is an offset into load module IDA0192A and PROBDT2B is an offset
into IDA0192B. xxx is the sum of these 2 offsets. The value of xxx and values
specified in the SLIP DATA parms may change with different releases and
maintenance levels of CSECT IDA0192B. Be sure to check with IBM Support
Personnel to ensure an accurate SLIP for your level.

3.2.14 Migration issues
Please refer to the relevant migration manuals to be aware of changes you need
to make when you migrate to a new release of z/OS.

Enhancements to calculation of default CISIZE is an example. This is described
in 4.2, “New Index CI size calculation algorithm” on page 208.
 Chapter 3. VSAM problem determination and recovery 159

3.2.15 Performance considerations
In a sense a performance problem may appear as a lack of availability. Refer to
Chapter 2, “Performance” on page 43, to see several aspects of VSAM
performance and specifically to 2.9, “Performance monitors” on page 136, to
learn about performance monitors.

3.2.16 Deadlocks
Deadlocks are a performance and also a problem determination subject.

Here we cover define a deadlock, how to prevent them, how to detect a deadlock
and what to do when we have one.

What is a deadlock?
Locks are used in VSAM by the DFSMS lock manager when the same control
block structures are shared by strings in task programs. In such a case, Share
Options do not apply. Refer to “Sharing data in a single VSAM control block
structure” on page 218. If the VSAM data set is processed in non-RLS mode
there is one lock per CI, when in RLS there is a lock per each logical record.

Then, contention for VSAM CIs locks (or logical records locks) can lead to
deadlocks, as such: A delays B in one lock and B delays A in other lock.

How to prevent a deadlock
The major rule is try to avoid to lock more than one logical records concurrently.
Also a key recommendation is to avoid consistent reads (CR). If the RLS
exploiter cannot follow such rules, it could create a hierarchy of locks. Then,
when more than one lock is required concurrently, they need to be required in a
pre-determined sequence.

How to detect a deadlock
The DFSMS lock manager provides a deadlock detection routine, the frequency
with which it runs is determined by the installation. This routine considers a string
task program in a deadlock situation, if it is waiting for a lock for more than an
installation specified amount of time. There are two deadlock detection routines:

� Deadlocks within a system
� Deadlocks between systems

The frequencies of the deadlock detection routines are specified in GDSMSxx
parameter of Sys1.Parmlib.

In a Sysplex, the first system that is initialized with an IGDSMSxx member having
a valid DEADLOCK_DETECTION specification determines this keyword for the
160 VSAM Demystified

other systems in the Sysplex. You can change this value through the SETSMS or
SET SMS commands.

This keyword specifies the intervals for running local and global deadlock
detection routine.

The first subparameter nnnn is the local deadlock detection cycle and specifies
the interval in seconds for detecting deadlocks within a system.

The second subparameter is the global deadlock detection cycle and specifies
the interval for detecting deadlocks between systems. This value is specified as
the number of local detection cycles that occur before global deadlock detection
is initiated.

To determine if a string task program is in a dead lock situation DFSMS lock
manager compares the RLSTMOUT keyword with the amount of time a string
task program is waiting for a lock.

RLSTMOUT({nnnn|0})

Specifies the maximum time, in seconds, that a VSAM RLS request must wait
for a required lock before the request is assumed to be in deadlock.

You can specify a value between 0 to 9999 (in seconds). A value of 0 means
that the VSAM RLS request has no time out value and the request waits for as
long as necessary to obtain the required lock.

RLSTMOUT can be specified only once in a sysplex and applies across all
systems in the sysplex.

What to do when a deadlock is detected
When a lock request is found in a deadlock, VSAM rejects the request in wait.

This results in the VSAM request completing with a deadlock error response.
Your applications must be prepared to accept locking error return codes that may
be returned on GET or POINT NRI requests. However, normally such errors do
not occur.

3.2.17 Beware of some VSAM restrictions
Keep this important restriction in mind when using the REPRO command.

REPRO to empty VSAM data set
If you try to repro into an empty VSAM data set, you will get an error IDC3351I **
VSAM OPEN RETURN CODE =160. This is a permanent restriction of VSAM.
One work-around is to "prime" the dataset by adding and deleting one record.
 Chapter 3. VSAM problem determination and recovery 161

This will increment the HI-U-RBA to a value other than zero, and allow the
REPRO to proceed.

3.3 What documentation to collect
First familiarize yourself with getting the required documentation, such as logs,
dumps, traces, and messages associated with errors. There is an information
APAR II12927 in IBMLINK that tells you what information you need to collect for
general VSAM problems.

3.3.1 Catalog performance problems
Here is the information to collect and questions to consider.

� Provide a clear and adequate description
� What is not performing properly?
� What is the basis for the performance expectation?
� What changes appear to trigger the performance change?
� Maintenance, release, application?
� Dump of CAS (and associated user ASIDs)
� Recovery actions (if Catalog is involved)
� Performance report
� Comparison report (what was performing in the last release?)

For details see information APAR II10752.

3.3.2 VSAM RLS problems
You would need to collect dumps of SMSVSAM and other address spaces
depending on the problem. You may require the following documentation:

� A dump of SMSVSAM ASIDs on all systems at the same time. See
Example 3-3.

� A dump SMSVSAM and XCF on all the systems in the sysplex See
Example 3-4.

� A dump of the SMSVSAM ASID, SMSVSAM data spaces and CICS regions
involved. See Example 3-5.

Note: It is generally a good idea to include an AMBLIST of the VSAM load
modules IDA019L1 and IDA0192A when sending a VSAM problem to IBM
level2 support.
162 VSAM Demystified

Example 3-3 Dump SMSVSAM ASIDs on all systems

DUMP COMM=(Some meaningful dump title),
 R nn,JOBNAME=(SMSVSAM),CONT
 R nn,SDATA=(GRSQ,RGN,ALLNUC,LPA,LSQA,CSA,PSA,SQA,SUM,SWA,TRT),
 R nn,DSPNAME=('SMSVSAM',*),
 R nn,REMOTE=(SYSLIST=*('SMSVSAM'),DSPNAME,SDATA),END

Example 3-4 Dump SMSVSAM and XCF on all systems

DUMP COMM=(SMSVSAM and XCF)
 R XX,JOBNAME=(SMSVSAM,XCFAS),DSPNAME=('XCFAS'.*,'SMSVSAM'.*),CONT
 R YY,SDATA=(GRSQ,RGN,ALLNUC,LPA,LSQA,CSA,PSA,SQA,SUM,SWA,TRT), CONT
 R ZZ,REMOTE=(SYSLIST=(*,('XCFAS','SMSVSAM',DSPNAME,SDATA)))

Example 3-5 Dump of SMSVSAM and CICS

DUMP COMM=(CICS & SMSVSAM HANG)
 R nn,JOBNAME=(SMSVSAM, CICS1, CICS2, CICS3, ETC),
 R nn,DSPNAME=('SMSVSAM'.*),
 R nn,SDATA=(PSA,NUC,SQA,LSQA,SUM,RGN,GRSQ,LPA,TRT,CSA),CONT
 R nn,REMOTE=(SYSLIST=*('SMSVSAM'),DSPNAME,SDATA),END
 where CICS1, CICS2, CICS3, ETC are the names of the CICS regions.

3.3.3 IDCAMS problems
The following are documentation requirements for IDCAMS problems:

� Syslog (including all messages, JCL and commands)
� VERIFY output
� LISTCAT ALL output
� EXAMINE (ITEST and DTEST)
� DIAGNOSE

3.3.4 Broken VSAM data set
You will need to collect the following documentation:

� SYSLOG/JOBLOG (including all messages, JCL and commands)
� EXAMINE (both ITEST and DTEST) output
� LISTCAT ALL output
� DIAGNOSE output

 Please see information APAR II08859 for more details.
 Chapter 3. VSAM problem determination and recovery 163

3.3.5 Broken catalog
Collect the following documentation for this error condition:

� LISTCAT ENT(catname)ALL CATALOG(catname)
� DIAGNOSE vvds
� DIAGNOSE bcs
� DIAGNOSE COMPARE vvds to bcs
� DIAGNOSE COMPARE bcs to vvds
� EXAMINE (both ITEST and DTEST)
� Any error messages from joblog

3.3.6 How to obtain VSAM record management trace?
Sometimes you may need to collect VSAM record management traces. This
section describes how to collect VSAM record management traces.

1. GTF must be activated before you allocate the data set that is being traced.
Start GTF with TRACE=USRP,USR=FF5, END

2. The SYS1.TRACE data set should be approximately 100 cylinders, or larger if
the space is available. If, however, the activity on this file will be quite heavy
there is a possibility of "lost trace entries." This means that the amount of
trace records coming in is more than GTF can keep up with. Splitting the
SYS1.TRACE data set into multiple data sets usually prevents this. See the
informational APAR II10072 for further information. An example has also been
provided following #5 (below).

3. Place an AMP=('TRACE=(subparameters)') on the DD statement of the data
set that you want to trace. VSAM Level 2 will provide you with the coding of
the AMP parameter.

4. Restart applicable CICS region(s), run batch jobs, and so on. It is important
that GTF be started BEFORE any data set allocation occurs, otherwise, the
control blocks for tracing will not be built and no tracing will occur.

5. Recreate the problem.

6. Stop trace as soon as job terminates.An example of JCL that can be used to
send the GTF output to more than one data set is shown in Example 3-6. This
is often necessary on high output traces:

Note: If the data set being traced is dynamically allocated a usermode must
be provided from L2 and applied to your system. For example:

//ddname DD ...,
// AMP=('TRACE=(PARM1=64C4A1802000,HOOK=(0,1,3,9,10,11,25,26))')
164 VSAM Demystified

Example 3-6 Sampler JCL for GTF trace

//GTFABC PROC MEMBER=GTFPARM
//IEFPROC EXEC PGM=AHLGTF,REGION=2880K,TIME=1440,
// PARM=('MODE=EXT,DEBUG=NO,TIME=NO')
//IEFRDER DD DSNAME=SYS1.GTFTRC,UNIT=SYSDA,
// SPACE=(4096,20),DISP=(NEW,KEEP)
//SYSLIB DD DSN=SYS1.PARMLIB(&MEMBER),DISP=SHR
//GTFOUT1 DD DSNAME=SYS1.TRACE1,UNIT=SYSDA,DISP=(NEW,KEEP)
//GTFOUT2 DD DSNAME=SYS1.TRACE2,UNIT=SYSDA,DISP=(NEW,KEEP)
//GTFOUT3 DD DSNAME=SYS1.TRACE3,UNIT=SYSDA,DISP=(NEW,KEEP)

GTF would be started with: S GTFABC.

SYS1.PARMLIB(GTFPARM) would be the parmlib member that contains the
trace parms to be used, TRACE=USRP,USR=(FF5),END.

3.4 How to recover a damaged VSAM data set
IDCAMS has three important commands used to recover VSAM clusters and
catalogs. They are: EXAMINE, DIAGNOSE, and VERIFY.

3.4.1 EXAMINE command
EXAMINE is an IDCAMS command that allows the user to analyze and collect
information on the structural consistency of KSDS data set clusters and of a
VVRDS data set cluster. In addition, EXAMINE can analyze and report on the
structural integrity of the basic catalog structure (BCS) of an ICF catalog. This
function cannot share a cluster opened for output or update by other task.

The EXAMINE function executes two possible tests:

� Test the Index portion (INDEXTEST), the default

Evaluates the full index component of the KSDS/VRRDS cluster by
cross-checking vertical and horizontal pointers contained within the index
control intervals, and by performing analysis of the index information. Usually
is a medium to small resource consuming task.

� Test the Data portion (DATATEST)

Evaluates the index sequence set and data component of the key-sequenced
data set cluster by sequentially reading all data control intervals, including
free space control intervals. Tests are then carried out to ensure record and
control interval integrity, free space conditions, spanned record update
capacity, and the integrity of various internal VSAM pointers contained within
the control interval. Usually this is a long resource consuming task.
 Chapter 3. VSAM problem determination and recovery 165

You can also limit the number of error messages generated (ERRORLIMIT) by
EXAMINE. Refer to “Broken data set” on page 179 for information about what to
do whether EXAMINE is reporting errors in the Index or Data portion. Refer also
to “IDCAMS EXAMINE messages” on page 420.

3.4.2 DIAGNOSE command
To analyze a catalog for synchronization errors, you can use the IDCAMS
DIAGNOSE command. With this command, you can analyze the content of
catalog records in the BCS and VVDS, and compare VVDS information with
DSCB information in the VTOC. Besides checking for synchronization errors,
DIAGNOSE also checks for invalid data, or invalid relationships between entries.

Because the DIAGNOSE command checks the content of the catalog records,
and the records might, for example, contain damaged length field values, there is
a possibility that the DIAGNOSE job will abend. For detailed information on using
DIAGNOSE, see DFSMS/MVS Managing Catalogs, SC26-4914.

3.4.3 VERIFY command
Some clarification of the word VERIFY is necessary in many cases. VERIFY is a
record management macro (just like GET or PUT). It can be used with certain
types of opened VSAM data sets to ensure that various fields in the VSAM
control blocks in catalog are accurate. It checks the ICF catalog against the
VSAM clusters.

What record management does on receiving this macro is to start reading the
data set CI by CI starting with the current high used RBA value stored in a
memory control block. If the data set is a KSDS, then both the index and the data
are VERIFYed.

VERIFY is also an IDCAMS command. In this case, IDCAMS opens the
requested data set for output, issue the record management VERIFY macro and
then close the data set. When the data set is closed, VSAM Close processing
uses its catalog interface to call Catalog to update the VVR information from the
new information in the VSAM control blocks. It is important to understand that
IDCAMS is neither updating VSAM control blocks nor the catalog directly.

Clusters, alternate indexes, entry-sequenced data sets, and catalogs can be
verified. Paths over an alternate index and linear data sets cannot be verified,
and the same is true of data sets in RLS mode. Paths defined directly over a
base cluster can be verified.
166 VSAM Demystified

When a data set is closed, its end-of-data and end-of-key-range information is
used to update the data sets cataloged information (located in the VVR AMDSB
cell). Among other fields, we have:

� High used RBA/CI for the data set
� High key RBA/CI
� Number of index levels
� RBA and the CI number of the first sequence set record
� System time stamp

Refer to 3.8, “IDCAMS LISTCAT output fields” on page 187, for more information.

A successful VERIFY means:

� The "end of the data set" indicators (data set high-used RBA/CI) etc.) are
probably valid.

� There may be missing records.

� There may be duplicate records.

� The data set statistics fields in the catalog may be invalid.

The recovery actions should be the same for a VSAM data set not properly
closed, whether VERIFY runs successfully or not.

Implicit VERIFY versus explicit VERIFY
Another area that is confusing when talking about VERIFY involves the terms
“explicit VERIFY” and “implicit VERIFY”. An explicit VERIFY refers to the user
initiating the VERIFY himself by issuing an IDCAMS VERIFY job against the data
set. An implicit VERIFY refers to VSAM Open processing internally issuing the
VERIFY macro against the data set when it determines that the data set was not
previously closed properly; this means that a previous job which had the data set
open for output has either abended or failed to close the data set for some
reason.

Open processing uses a bit in the catalog to determine this. When a job opens a
data set for output processing, this bit (the “open for output” bit) is turned on. It is
not turned off until the job closes the data set normally. Open processing, if it
finds this bit on in a subsequent open, uses GRS (enqueueing against the data
set name) to determine if the data set is currently open for output. If not, then it
concludes that the last close was abnormal and issues the VERIFY before
completing the Open process. It also issues IEC161I messages (rc56 and rc62)
to indicate that it has done this. All Open jobs against the data set will get this
implicit VERIFY and the associated messages until the data set is opened for
Output.

VSAM OPEN will NOT do an "implicit verify" for the following OPENs:
 Chapter 3. VSAM problem determination and recovery 167

� The data set is being opened for input

� The data set is being opened for RESET processing

� The user requested verify to be suppressed

� The data set is being opened for Improved control interval processing

� The data set is being opened for RESTART processing

� The data set is being opened for non-ESDS create mode processing

� The data set is a Linear data set

VSAM OPEN will do an "implicit verify" or without issuing a message when the
ACB being opened is the first open for output connecting to an existing control
block structure and shareoptions=2,x.

Implicit VERIFY problems
Here we discuss a couple of problems with the implicit VERIFY that are not
inherently obvious.

Normally, a VERIFY does not take much overhead because it is reading in CI
mode from the HURBA in the catalog to the “real” HURBA. However, if the data
set had much activity in the output job before it abended (for example, a log file
that was being loaded), then the VERIFY could take many minutes, as it basically
reads the entire file. This could also be a severe impact if there were many files
open in the application.

CICS provides a good example of this problem. If the CICS region comes down
hard (for example, if a CEMT P SHUT IMM is issued), then all TCBs are
abended, and all files open for output at the time will have the “open for output”
bit on in the VVR. This will means they will all need to be implicitly VERIFY'd as
the region is brought back up. If this is the case, you need to have a procedure in
place to explicitly VERIFY the important files in the case of an abend situation so
that the system can come up and the important applications can start running
immediately.

ACTION=REFRESH
One addition which was made to VSAM quite some time ago was the
ACTION=REFRESH parameter of the VERIFY macro. Without this parameter,
the VERIFY macro will only read up to the current HARBA of the data set (as set
in VSAM control block). Since this value could have changed since the last time
the data set was opened by the current job, this facility allows the control blocks
for a data set to be updated to reflect the current structure of the data or index
(from the values in the catalog/VVR). To accomplish this, record management
through EOV uses catalog interface to update the in storage control blocks with
the current boundaries of the data set.
168 VSAM Demystified

Use the cluster or alternate index name as the target of your VERIFY command.
Although the data and index components of a key-sequenced cluster or alternate
index can be verified, the timestamps of the two components are different
following the separate Verifies, possibly causing further OPEN errors.

The following sections provide some real life scenarios covering the rise and fall
of a VSAM data set.

3.4.4 Broken Index scenario
In this scenario, you observe the following conditions:

� You have a program which opens a KSDS data set for update. The access
argument is through RBA. However, by mistake, someone has prepared JCL
pointing to the index name instead of cluster name or data name.

� The program finishes with a return code equal to zero, but with an unknown
damaged index. However, the index time stamp is now different from the one
in the data component, as LISTCAT shows. Nevertheless, RACF does not
prohibit this action, because the user is the owner of the cluster. See
Figure 3-1.

Figure 3-1 JCL, program, message and catalog entry

� The next time that you open the cluster or the data, the following happens:

– At open, the message IEC161I 058(018)-061 is issued and the OPEN
return code is 4. The processing continues. See the message at
Figure 3-2.

//*JCL -------------------------------------
//SEQ EXEC PGM=TSTIDX
//VSAM DD DSN=KSDS.K4REP.INDEX,DISP=SHR

TSTIDX PROGRAM:
ACB,DDNAME=VSAM,MACRF=(ADR,SEQ,OUT)
RPL,ACB=(R2),OPTCD=(ADR,SEQ,UPD,MVE)

SYSOUT MESSAGE:
JOBNAME STEPNAME PROCSTEP RC
TSTIDX SEQ 00

LISTCAT ENTRY(‘KSDS.K4REP’) ALL:
DATA: SYSTEM-TIMESTAMP: X'B3E245958A0845C4'
INDEX: SYSTEM-TIMESTAMP: X'B3E278BEC0D91601'
 Chapter 3. VSAM problem determination and recovery 169

Figure 3-2 IEC161I message

– Going on with the processing, in a GET or PUT, the program receives a
return code 8, reason code X’9C’, indicating that an invalid control interval
was detected. The program reading the data issues a message indicating
the error. When the program is IDCAMS, the processing stops and the
messages below (Figure 3-3) are issued in the SYSPRINT ddname file. If
the data set is open for output, the timestamp is corrected, but the I/O error
remains, once the index is damaged.

Figure 3-3 IDC message in the console

� You run an EXAMINE IDCAMS command, getting back the messages shown.
In our test, we caused the error by filling the first control interval with X‘00’:
See Figure 3-4.

� For recovering the index:

– Use the REPRO Command to copy just the data component of the KSDS
to a sequential data set. Specify the data component name (not the
Cluster Name) in the REPRO INFILE parameter.

– Sort the sequential data set by key.

– DELETE and reDEFINE the damaged Cluster.

– REPRO from the Sorted Sequential File to the newly defined Cluster.
Record Management will rebuild the Index Component.

IEC161I 058(018)-061:

058 The time stamp for the index does not match the time stamp for
 the data set. This could occur if the data set was updated
 without the index being open.

 System Action: OPEN processing continues. The error flags

in the ACB (access method control block) for the data set are set
to 108.

 Programmer Response: You can continue to process the data

set, but errors can occur if the data set and index do not
 correspond. Check for possible duplicate VVRs.

IDC3300I ERROR OPENING KSDS.K4REP
IDC3351I ** VSAM OPEN RETURN CODE IS 108
IDC3302I ACTION ERROR ON KSDS.K4REP
IDC3351I ** VSAM I/O RETURN CODE IS 156 - RPLFDBWD = X'D708009C'
IDC31467I MAXIMUM ERROR LIMIT REACHED.
170 VSAM Demystified

Note: This method does not work for a VSAM Catalog, Integrated Catalog (ICF),
or for a Spanned KSDS.

Figure 3-4 Examine messages

3.4.5 Abend task scenario
At task abend, RTM does not properly close the VSAM data set, then:

� Buffers are not flushed (with the exception of cross systems shareoptions 4)
and the HURBA is not updated in the catalog. In Language Environment there
is an option (TRAP ON) which forces the close (with flush and HURBA
actualization), using a STAE exit.

If the HURBA was not updated, when the data set is subsequently opened
and the user's program attempts to process records beyond end-of-data or
end-of-key range, a read operation results in a “no record found” error, and a
write operation might write records over previously written records. To avoid
this, you can use the VERIFY command, which corrects the catalog
information. For additional information about recovering a data set, see
DFSMS/MVS Managing Catalogs, SC26-4914-04.

� If the data set was opened for output, the open-for-output indicator is left on.
In this case, at next Open, VSAM implicitly issues a VERIFY command, when
it detects an open-for-output indicator on and issues an informational
message stating whether the VERIFY command is successful. However, a
successful VERIFY does not mean that the data set is error free.

If a subsequent Open is issued for update, VSAM turns off the
open-for-output indicator at successful Close. If the data set is opened for
input, however, the open-for-output indicator is left on. Refer to 3.2.3,
“Mismatch between catalog and data set” on page 145, for more information.

INDEXTEST BEGINS
HIGH-LEVEL INDEX CI EXPECTED BUT NOT ACQUIRED
CURRENT INDEX LEVEL IS 3
INDEX CONTROL INTERVAL DISPLAY AT RBA/CI 245760 FOLLOWS
 000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000000
00 *................................*
 000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000000
...

ERROR LOCATED AT OFFSET 00000010
MAJOR ERRORS FOUND BY INDEXTEST
LASTCC=8
 Chapter 3. VSAM problem determination and recovery 171

3.4.6 Recovering damaged BCS entries
To recover damaged BCS entries, follow these steps:

1. Remove the sphere or base record, if it exists.

The damage detected might not be in a sphere or base record. If it is not, the
entry name of the sphere or base record is indicated in messages IDC21364I
and IDC21365I.

2. Remove any remaining association records.

You can re-execute the DIAGNOSE command after you remove the sphere or
base record to identify any unwanted truename or association entries in the
BCS. You can remove these entries by using the DELETE command with the
TRUENAME parameter.

3. Reintroduce the removed entries into the catalog.

After the damaged entries have been removed, you can redefine the data
sets. For VSAM and SMS-managed non-VSAM data sets, you should specify
the RECATALOG option of the DEFINE command.

If you are recovering generation data group entries, use the same procedure.
However, you must reintroduce the current generation data sets into the catalog
in the proper order after the generation data group has been redefined. You can
use the LISTCAT command to determine the current generation data sets.

3.4.7 Recovering damaged VVDS entries
To recover damaged VVDS entries, complete these steps:

1. Remove the entries in the BCS for the data set, if they exist.

Before the damaged VVDS records can be removed, you must remove the
entries in the BCS. See 3.4.6, “Recovering damaged BCS entries” on
page 172, for more details on removing BCS entries.

2. Remove the damaged VVDS records.

After you have removed the BCS entries, you can remove the VVDS records
by using the Delete command and specifying VVR or NVR. Delete VVR or
NVR also removes the Format 1 DSCB from the VTOC.

3. Recover the data set from a backup copy.

If a backup copy of the data set does not exist and the data set can be opened,
you can attempt to recover some of the data. Depending on the extent and type
of damage in the VVDS record, you might be unable to recover any data. The
data that you do recover might be damaged or out of sequence.
172 VSAM Demystified

3.5 Prevention is better than cure
You can take a number of actions to prevent VSAM problems. Here we provide
some recommendations.

3.5.1 Back up your VSAM data sets
� Back up all your critical data by using methods such as:

– SMS management class with ABARS for backups, to allow restore of your
data in the case of a hardware error and/or application error, and for use in
disaster recovery.

– Remote copy for disaster recovery.

Here, we discuss some backup issues you need to consider

IDCAMS export and import
First, we explain some of the unique characteristics of the EXPORT and IMPORT
commands:

� The EXPORT command either exports a cluster or an alternate index or
creates a backup copy of an integrated catalog facility catalog.

Exporting means to store the cluster or AIX data in other media in a
non-processable format, together with catalog information about the data set.
An empty candidate volume cannot be exported. Access Method Services
acknowledge and preserve the SMS classes during EXPORT.

Figure 3-5 is an example in which a key-sequenced cluster,
ZZZ.EXAMPLE.KSDS1, is exported from a user catalog, HHHUCAT1. The
cluster is copied to a portable file, TAPE2, and its catalog entries are modified
to prevent the cluster's data records from being updated, added to, or erased.
 Chapter 3. VSAM problem determination and recovery 173

Figure 3-5 Exporting KSDS

� IMPORT is the opposite operation to EXPORT. Here, you reload the cluster or
AIX data and recatalog its catalog information in an active catalog.

Figure 3-6 is an example in which a key-sequenced cluster,
BCN.EXAMPLE.KSDS1, that was previously EXPORTed, is IMPORTed. The
OUTFILE and its associated DD statement are provided to allocate the data
set. The original copy of BCN.EXAMPLE.KSDS1 is replaced with the
imported copy, TAPE2. Access Method Services finds and deletes the
duplicate name, BCN.EXAMPLE.KSDS1, in the catalog VCBUCAT1.

A duplicate name exists because TEMPORARY was specified when the
cluster was exported. Access Method Services then redefines
BCN.EXAMPLE.KSDS1, using the catalog information from the portable file
TAPE2.

Figure 3-6 IMPORT of KSDS cluster

//EXPORT1 JOB ...
//STEP1 EXEC PGM=IDCAMS
//RECEIVE DD DSNAME=TAPE2,UNIT=(TAPE,,DEFER),
// DISP=NEW,VOL=SER=003030,
// DCB=(BLKSIZE=6000,DEN=3),LABEL=(1,SL)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
EXPORT -
ZZZ.EXAMPLE.KSDS1 -
OUTFILE(RECEIVE) -
TEMPORARY -
INHIBITSOURCE
/*

//IMPORT2 JOB ...
//STEP1 EXEC PGM=IDCAMS
//SOURCE DD DSNAME=TAPE2,UNIT=(TAPE,,DEFER),
// VOL=SER=003030,DISP=OLD,
// DCB=(BLKSIZE=6000,LRECL=479,DEN=3),LABEL=(1,SL)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
IMPORT -
INFILE(SOURCE) -
OUTDATASET(BCN.EXAMPLE.KSDS1) -
CATALOG(VCBUCAT1)
/*
174 VSAM Demystified

Backup while open considerations
Backup-while-open (BWO) allows DFSMSdss logical dump for an IMS or a
CICS/VSAM data set while open-for-update. BWO works with Concurrent Copy
(in 9390), or Snapshot (in RVAs), or Flashcopy (in ESS). The VSAM data set
must be SMS managed.

The DFSMSdss BWO function does not apply to: Catalogs, VVDSs, LDSs,
physical dump, and restore.

When you define the cluster with IDCAMS, you must declare it as a BWO. The
options are:

� TYPECICS

Use the TYPECICS parameter to specify BWO in a CICS environment. For
RLS processing, this activates BWO processing for CICS. For non-RLS
processing, CICS determines whether to use this specification or the
specification in the CICS control data named FCT.

Note: If CICS determines that it uses the specification in the CICS FCT, the
specification might override the TYPECICS or NO parameters.

� TYPEIMS

If you want to use BWO processing in an IMS environment, use the TYPEIMS
parameter.

� NO

Use this parameter when BWO does not apply to the cluster.

To have BWO with total security and integrity, the following products are
modified:

� DFSMSdfp, where catalog services have been changed to prevent
unauthorized alterations of BWO indicators. DFSMSdfp does not allow
deletion of a data set that DFSMSdss dumps as a BWO data set.

� DFSMSdss enqueue serialization has been changed to prevent data integrity
exposures when performing defrag, dump, or restore operations.

� DFSMShsm, used for incremental backups and aggregate backups of a data
set, invokes DFSMSdss to perform BWO.

In the catalog the following fields are referring to BWO:

� BWO: Data set is enabled for backup-while-open.

� BWO STATUS: Indicates the status of the data set. Status can be:

– Data set is enabled for backup-while-open.

– Control interval or control area split is in progress.
 Chapter 3. VSAM problem determination and recovery 175

– Data set has been restored and is down level. It might need to be updated
with forward recovery logs.

� BWO TIMESTAMP: A CICS timestamp that indicates the time from which
forward recovery logs have to be applied to a restored copy of the data set.

Space constraint relief
Before we start explaining more complicated recovery situations, let us address a
common abend situation prior to DFSMS/MVS 1.4.

Users occasionally encounter data set allocation or extension failures (the X37
type of abends), because there is not enough space available on a volume to
satisfy the request. Incidentally, VSAM does not externalize an X37 abend. You
recognize the out-of-space condition by the message IEC070I 203-204, where
203 is the reason code. You find the explanation in the message IEC161I, return
code 203, when no secondary space allocation quantity was specified. Return
code 204 is issued when a new extend was attempted, but the maximum number
of extents was reached.

SMS alleviates this out-of-space situation to some extent by performing volume
selection, checking all candidate volumes before failing an allocation.

With DFSMS/MVS 1.4, you can also use the Space Constraint Relief and
Reduce Space Up To (%) attributes in the data class to request that an allocation
be retried if it fails due to space constraints. SMS retries the allocation by
combining any of the following:

� Spreading the requested quantity over multiple volumes
� Allocating a percentage of the requested quantity
� Using more than 5 extents

Space Constraint Relief specifies whether or not to retry an allocation that was
unsuccessful due to space constraints on the volume. Note that allocation is
attempted on all candidate volumes before it is retried. This attribute applies only
to system-managed data sets, and is limited to new data set allocations, and
while extending the data set on new volumes.

Out-of-space conditions are now further reduced for new volume processing of
SMS-managed data sets. VSAM and non-VSAM data sets can now acquire up to
123 extents instead of just 5 extents on a volume. Multivolume VSAM data sets
can now have a maximum of 255 extents across volumes for each component,
but no more than 123 extents per volume.

Two new parameters, Space Constraint Relief and Reduce Space Up To (%), are
added to the SMS data class definition for this support.
176 VSAM Demystified

Reduce Space Up to (%) specifies the amount by which you want to reduce the
requested space quantity when the allocation is retried. You must specify Y for
the Space Constraint Relief attribute. Valid values are 0 to 99.

If you specify Y for Space Constraint Relief, SMS begins the retry process. This
is a one or two-step process, depending on the volume count you specified. For
JCL allocations, SMS determines the volume count by taking the maximum of the
unit, volume, or volser count. If these are not specified, SMS picks up a volume
count from the data class. If there is no data class, SMS defaults the volume
count to one:

� If the volume count is one (one-step process):

SMS retries the allocation after reducing the requested space quantity based
on the Reduce Space Up To attribute. SMS simultaneously removes the
5-extent limit, so that SMS can use as many extents as the data set type
allows

� If the volume count is greater than one (two-step process):

First, SMS uses a best-fit volume selection method to spread the primary
quantity over more than one volume (up to the volume count). If this fails,
SMS continues with the best fit method after reducing the primary quantity
and removing the 5-extent limit.

If you request Space Constraint Relief but do not specify a percentage value
(either 0 or blank), SMS does not reduce the requested space quantity. This
implies your application cannot tolerate a reduction in the space to be allocated,
so you want to remove the 5-extent limit, thereby allowing SMS to use more than
5 extents.

For extends to new volumes, Space Constraint Relief is strictly a one-step
process. If regular volume selection has failed to allocate space, SMS reduces
space or removes the 5-extent limit, but does not try the best-fit method.

The number of extents vary depending on data set type, as follows:

� Non-VSAM, non-extended format data sets, up to 16 extents on the volume

� Non-VSAM, extended format data sets, up to 123 extents

� PDSE, up to 123 extents on the volume

� VSAM data sets, up to 255 extents per component but only up to 123 extents
per volume per component

When you request Space Constraint Relief in one or more data classes, you
might notice any of the following:

� Very large allocations might succeed if a sufficiently large volume count is
specified in the data class or through JCL.
 Chapter 3. VSAM problem determination and recovery 177

� Existing data sets might end up with less space than initially requested on
extents.

� The space allocated for new data sets might be less than requested.

� The number of extents used during initial allocation might result in fewer
extents being subsequently available. For example, if the primary space
allocation uses 10 extents when allocating a physical sequential data set,
then only 6 extents are left for allocation of the secondary quantity.

� You might observe fewer X37 abends.

3.5.2 Keep your system at current maintenance levels
Keep your system at a current maintenance level. Apply PTF selective service in
your operating system, especially the ones associated with VSAM. To find fixes
associated with broken VSAM data sets, use the search word 'dsbreaker' in
either retain or through ibmlink (askq).

3.5.3 Use Resource Recovery Management Services (RRMS)
RRMS is an z/OS component that allows you to coordinate resource recovery.
Please refer to 3.10, “RRMS and VSAM” on page 199 for details.

3.6 Where to look for more information
Here we list documents and APARS that you may find helpful for further
information.

3.6.1 IBM manuals and sources of relevant information
� ICF catalogs. Refer to Integrated Catalog Facility Backup and Recovery,

SG24-5644-00.

� VSAM data sets in Record Level Sharing (RLS) mode. Refer to CICS/ VSAM
Record Level Sharing: Recovery Considerations, SG24-4768.

� VSAM Knowledge Database, which is an interactive diagnostic tool. It is a
question-and-answer driven knowledge database that resides on the
DFSMS/MVS Technical Support Web site under “Technical Database” at:

http://knowledge.storage.ibm.com/

� APAR, II08859 which has a methodology to assist you in fixing broken VSAM
clusters.

� DFSMS/MVS DFSMSdfp Diagnosis Reference, LY27-9606-05.
178 VSAM Demystified

http://knowledge.storage.ibm.com/

3.6.2 Information APARs from IBMLINK on VSAM problems
There are several APARs in IBMLINK that provide useful information to assist
you with VSAM problem determination.

We provide here a list of such APARs:

� II12927 - GUIDELINES FOR DOCO NEEDED BY VSAM LEVEL2
� II08859 - BROKEN DATASET - VSAM KSDS
� II10752 - ICF CATALOG PERFORMANCE PROBLEMS
� II12603 - SMSVSAM INITIALIZATION AND RECOVERY CONSIDERATIONS
� II12243 - MISC ABEND0F4 IN SMSVSAM FOLLOWING 'V XCF,'SYSNAME''
� II10001 - Document problems in VSAM, IDCAMS, and Catalog
� II13326 - COMMON PROBLEMS FROM SHCDS DEFINITION AND USAGE
� II02490 - Broken Data Set (see also II08859)
� II02516 - ATTACH macro
� II03551 - RPL error RC8 RSN28 (x'1C')
� II04390 - BLSR
� II05222 - Media Manager
� II05789 - Overlay by CCHH data
� II06620 - LSR
� II06778 - Hiperbatch
� II06941 - RNL
� II07664 - Enqueue
� II08631 - Compression Information
� II08685 - Compression Maintenance
� II08859 - Broken Data Set (see also II02490)
� II10001 - OEM BUGS IN VSAM, CATALOG & IDCAMS
� II11013 - OEM BUGS IN VSAM, CATALOG & IDCAMS
� II11513 - OEM BUGS IN VSAM, CATALOG & IDCAMS
� II12140 - OEM BUGS IN VSAM, CATALOG & IDCAMS
� II12615 - OEM BUGS IN VSAM, CATALOG & IDCAMS
� II13278 - OEM BUGS IN VSAM, CATALOG & IDCAMS
� II07664 - DIAGNOSTIC TIPS VSAMINFO : ENQUEUE

3.6.3 Information APARs on specific problems

Broken data set
� II08859
� II11955
� II08859
� II02490
 Chapter 3. VSAM problem determination and recovery 179

ICF catalogs
� II10752

RLS
� II13326 - COMMON PROBLEMS FROM SHCDS DEFINITION AND USAGE
� II12603 - SMSVSAM INITIALIZATION AND RECOVERY CONSIDERATIONS
� II12243 - MISC ABEND0F4 IN SMSVSAM FOLLOWING 'V XCF,'SYSNAME''

TVS

OEM and other IBM products
� II10001
� II11013
� II11513
� II12140
� II12615
� II13278

Lock problems
� BDC000022923 - Loop if locksize is too large
� RTA000141603 - Rebuild of IGWLOCK00
� BDC000018772 - MAX IGWLOCK00
� BDC000011289 - VIOPLUS

Export / Import tips
� II07902

Memory shortage
� BDC000013015
� II05506

3.6.4 VSAM information on the Internet

VSAM Knowledge base
http://knowledge.storage.ibm.com/

DFSMS support sites
http://ssddom02.storage.ibm.com/techsup/webnav.nsf/support/dfsms

Flashes
http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/Flashes
180 VSAM Demystified

http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/Flashes
http://knowledge.storage.ibm.com/
http://ssddom02.storage.ibm.com/techsup/webnav.nsf/support/dfsms

3.7 IDC3009I message
When working with catalogs and VSAM data sets, the IDC3009I message is
probably the most common message you receive. IDC3009I is issued as a result
of a catalog error or exceptional condition involving a catalog.

The format of this message is shown here:

IDC3009I VSAM CATALOG RETURN CODE IS return-code — REASON CODE IS IGGOCLaa —
reason-code

The message specifies a return code and a reason code, and they are described
in OS/390 MVS System Messages, Vol 3 (GDE-IEB), GC28-1786. The return
codes are as listed in Table 3-1. The table is not intended to replace the
messages manual, but rather to serve as a quick reference.

Table 3-1 IDC3009I message

Return
Code

A brief explanation

4 Error while performing open/close to a VSAM catalog. See reason code, can be either a small
region size.

8 The specified entry does not exist if locate was the action or
the entry already exists, if action is one which adds an entry to a catalog.

10 An incorrect record type was found in the catalog.

12 The component was not found. It can be an AIX, a data or an index, depending on reason code.

14 Catalog cell not found.: Run the Access Method Services DIAGNOSE command to check for
additional information.

16 Request is not supported for SMS managed volumes.

18 ALTER for a backup or migrated data set failed.

20 VSAM catalog has run out-of-space.

22 Catalog field vector table (FVT) is zero or an incorrect FVT field was found.

24 Permanent read error in VSAM catalog.

26 ICF catalog: VSAM record management error (catalog record too big or too small).

28 Permanent I/O error in VSAM catalog. Messages IEC331I, IEC332I, and
IEC333I have been printed to aid in determining the cause of the error and where the error
occurred.

30 Automated Tape Library DataServer (ATLDS) processing error.
 Chapter 3. VSAM problem determination and recovery 181

32 Error in the VSAM catalog parameter list and indicates an internal error in Access Method
Services.

36 Data set not found or DSCB indicates a VSAM data set.

38 Error found in a catalog installation error (user or DFHSM supplied) while processing a
CATALOG, INDEX or LOCATE macro. If DFHSM, messages (ARCxxxI) are issued before.

40 Two or more tasks are modifying a catalog entry, causing it to be extended in size, and one task
finds that it was unable to specify sufficient virtual storage for catalog management's new
requirements.

42 A DADSM error occurred on branch entry to DADSM back end (DADSM rename, locate or
scratch, according to reason code).

44 The caller's work area is too small.

48 Incorrect VSAM catalog function.

50 An error has been detected in VVDS manager error.

52 Permanent I/O error on user volume. An attempt to run a direct execute channel program
(EXCP) write of a DSCB to the VTOC failed. The reason codes are the event control block (ECB)
completion codes returned after the EXCP write and you can the meaning in “Event Control
Block Fields”,DFSMS/MVS DFSMSdfp Advanced Services, SC26-4921.

54 Incorrect use of JOBCAT or STEPCAT with SMS data sets.

56 A security verification failed.

58 Error while reading a DSCB into a work area. Reason code is DADSM OBTAIN Return Code
and you can find in “Return Codes from OBTAIN”, DFSMS/MVS DFSMSdfp Advanced
Services, SC26-4921.

60 Incorrect entry type for requested action.

62 Error while initializing the extension of a data set. The reason codes are the complement of the
error codes returned from the DADSM extend routine; refer to DFSMSdfp Diagnosis Reference,
LY27-9606.

64 VSAM catalog cannot find either a data or an index entry which is associated with a cluster or
alternate index entry.

66 Bad DADSM parameter list. The reason code is the DADSM return code, and you can find in
DFSMSdfp Diagnosis Reference, LY27-9606.

68 No space is available on the user volume for the ICF catalog. Only the
primary volume will be used.

70 A generation data set component was not found in the GDG sphere record.

Return
Code

A brief explanation
182 VSAM Demystified

72 The user volume is not mounted. The reason codes are from VSAM open/close/end-of-volume,
volume mount and verify routine IDA0192V.

74 Catalog Cell not found. Different reasons codes from those specified in return code 14.

76 No unit available for mounting or volume not mounted.

78 Subrecord move error. It can be: Catalog management was unable to obtain enough virtual
storage to contain the catalog record with the addition of the subrecord or verification record
was not within the length range of 1 to 256.

80 The object specified in the RELATE parameter of a DEFINE command does not exist, or is
improper for the type of object being defined.

82 The number of data set entries passed exceeds the allowed maximum for the catalog name
locate.

84 Date error: a DELETE to a data set with an unexpired purge date and PURGE was not specified
or there are conflicting date format (rc=2).

86 Recatalog error, reason vary according to reason codes.

88 Error with a catalog recovery area (CRA) define operation: The total space specified was not
able to contain the size specified for the catalog and
the one cylinder of space required for the CRA.

90 Delete error.

92 The maximum number of extents was reached.

94 A DADSM OBTAIN request failed during a VSAM catalog delete request. The reason code is
the OBTAIN return code and you can find out its meaning in “DADSM OBTAIN Function Return
Codes”, DFSMSdfp Diagnosis Reference, LY27-9606.

96 An error occurred in specifying key length, key position or record size for an alternate index or
spanned cluster.

98 An unusual condition occurred during an ALTER name of a unique or non-VSAM data set. The
reason code is status byte returned by the DADSM RENAME function. See the meaning in
“Status Codes from RENAME”, DFSMSdfp Diagnosis Reference, LY27-9606.

102 A DADSM SCRATCH request failed during a VSAM catalog delete request. for a unique or
non-VSAM data set. The reason code is status byte returned by the DADSM SCRATCH
function. See the meaning in “Status Codes from SCRATCH”, DFSMSdfp Diagnosis Reference,
LY27-9606.

104 A DEFINE command is attempting to define a second VSAM master catalog when a VSAM
master catalog already exists and is open.

106 A format-4 DSCB processing error was encountered.

Return
Code

A brief explanation
 Chapter 3. VSAM problem determination and recovery 183

108 An incorrect field name was found in the field parameter list. The field name passed by AMS
does not exist in the VSAM catalog management dictionary. The message indicates that the
caller's AMS release level or maintenance level is different from the CATALOG level that is being
called.

110 Unable to modify or delete RACF profile. It does not exist (but has RACF indicator (reason 4) or
a rename processing for a RACF-protected data set failed because as a result of the new name,
the data set cannot be defined to the security subsystem.

112 Incorrect Catalog field parameter list (FPL).

114 As a result of an IMPORT, IMPORTRA, or DEFINE command, VSAM has attempted to establish
a RACF profile for a cluster/alternate index, data, or index object (reason codes 0, 4, and 8
respectively). This failed because a profile with the same name already exists.

116 VSAM catalog records are incorrect. The reason code explain for what kind of object the record
can not be obtained.

118 The data set name is ineligible for RACF definition. User does not have authority (reason code
0) or RACF inactive (reason code 12).

120 Attempt to modify the non-existent or system field. This is a system error.

124 Incorrect control interval number.

126 Alter new name of a GDS, non-VSAM or cluster failed because an ACS service returns a
non-zero return code. ACS reason code = catalog reason
code + 1000. services reason codes from 1000 to 1255. The ACS
services return and reason codes are documented in the DFSMSdfp Diagnosis Reference,
LY27-9606.

128 A user-provided storage is outside the user region. Probable system error.

130 An ALTER RENAME recatalog error. Reason code explains why.

132 Incorrect pointer value in argument list. Probable system error.

136 Required parameters not supplied. Probable system error.

138 DADSM RENAME error. Reason code is the volume status code returned from DADSM.

142 DADSM OBTAIN error. Reason code is the return code from OBTAIN and you find in DFSMSdfp
Advanced Services, SC26-4921.

144 An incorrect entry name format or the name has an initial character as a numeric or used a
restricted name. See reason code.

148 Volume already owned by another VSAM catalog. Specify a different volume or use the Access
Method Services ALTER REMOVEVOLUMES command to reset the volume ownership if a
catalog should not own the volume.

Return
Code

A brief explanation
184 VSAM Demystified

150 Name length error for an SMS construct. Storage class (reason code 2) or data class (4) or
management class (6).

152 A non-empty catalog cannot be deleted. If the catalog and all of its
entries are to be deleted specify the FORCE parameter on the Access Method Services
DELETE CATALOG command.

156 The volume does not contain a data space for another VSAM data set. There is insufficient
space in the data spaces allocated on the volume to satisfy a request for suballocation.

160 DELETE space is requested for a volume containing a catalog. See explanation and
programmer response in reason code.

164 There is insufficient virtual storage available for VSAM catalog management. Increase the
region size available to the step.

168 Unsupported device type.

172 A DEFINE command specifies the name of a data set, with the UNIQUE attribute, but there is
already a data set on the specified volume with that name.

176 There is no space in the VTOC for a DSCB. Delete any unneeded data sets or data spaces from
the volume or recreate the volume with a larger VTOC.

178 An error occurred during ICF catalog processing of a VSAM partial release request.

180 Data space name not found. Probable system error. The catalog or a volume may have been
totally or partially destroyed.

182 Bad DADSM UPDATE parameter list. The reason code is the Volume status code from DADSM.
You can see a volume status using ISMF.

184 The data set is currently open and cannot be deleted or altered.

186 Error attempting to lock a catalog or access a locked catalog.

188 Catalog unavailable. See return code in the messages manual.

190 Authorization error on a facility class function applied to SMS data sets. The user need read
access authority to 'STGADMIN.IGG.LIBRARY'.

192 Maximum logical record length specified is greater than 32,761 for a non-spanned data set.

194 An error occurred during multi-level alias (MLA) facility processing. See reason code in the
message manual.

196 The data component control interval size specified is greater than 32,767.

198 An attempt has been made to use an unsupported feature. Related to a UCB’s device defined
above 16M, which resides a VSAM catalog.

Return
Code

A brief explanation
 Chapter 3. VSAM problem determination and recovery 185

200 The specified or defaulted control interval size of the index component is greater than the
maximum block size of the index device. Reduce the control interval or use a device with a larger
maximum block size.

202 Storage management subsystem call error. Redefine the data set with a management class
with no retention limit or with a specified retention value equal to or exceeding the date specified
in the ALTER command.

204 Key specification extends beyond end of maximum logical record. Reduce the key length,
change the key position, or increase the logical record length.

208 The buffer space specified is too small. Do not specify BUFFERSPACE, let the default value.

210 Subsystem call error. Reason code is the return code from Subsystem call.

212 Control interval size calculation unsolvable. See reason code.

214 Subsystem call error. Reason code is the return code from Subsystem call.

216 The volume's VTOC is not interpretable. An incorrect VTOC was deleted during update extend
processing for a VSAM data set. Restore the volume in order to correct the VTOC.

220 A DOS VTOC cannot be converted to an OS VTOC. Restore the volume in order to correct the
VTOC.

222 Alter new name of a GDS, non-VSAM or cluster failed because an ACS service returns a
non-zero return code. ACS reason code = catalog reason code + decimal 256. ACS services
return and reason codes are documented in DFSMSdfp Diagnosis Reference, LY27-9606.

224 A field in a catalog entry has exceeded the maximum allowable number of repetitions. For
example, trying to add more than 255 volumes or more than 125 alternate indexes in the
upgrade set.

226 The caller is not authorized to perform the requested function. The caller must be running in key
0 - 7, must be in supervisor state, or must be APF authorized.

228 An error occurred while processing an Enhanced Catalog Sharing (ECS) request. Refer to
reason code in the message manual to correct the problem.

230 VSAM catalog retrieve of a control interval failed to get a low range record from the VSAM
catalog. Probable system error.

232 An error was encountered while VSAM Catalog Management was performing SMF processing.
Use the reason code as a return code to IDC3009I to find out the reason of the error.

234 End of data encountered while reading the low data key range of the VSAM catalog. Probable
system error.

236 An error was encountered in space-map. This condition arises when the catalog's volume entry
is incorrect. Reconstruct the volume entry record. If that is not possible, restore the catalog.

Return
Code

A brief explanation
186 VSAM Demystified

3.8 IDCAMS LISTCAT output fields
In the ICF catalog, VSAM maintains special RBA, CI, and Key values together
with time stamps, which are very important in accessing a VSAM cluster. The
most important ones are located in the VVR AMDSB in the VVDS cell and are
updated only at Close time.

IDCAMS LISTCAT command displays this information, which is key to
diagnosing what caused the error. The screen below shows some JCL you need
in order to issue the LISTCAT command via BATCH. You can issue the same
command under TSO/ISPF.

238 No user catalog entry in the master catalog for Convert Volume processing.

240 Required DD statement not supplied. See reason code in the message manual.

242 A physical I/O error occurred trying to erase the data set being deleted. The reason code
correspond to the VSAM Record Management error codes. See “Record Management Return
and Reason Codes” in DFSMS/MVS Macro Instructions for Data Sets, SC26-4913. Run the job
again with the NOERASE option. The data set cannot be deleted.

244 Erase action failed. The VSAM Catalog Management is unable to open the VSAM data set
being deleted. The reason codes correspond to the VSAM OPEN error codes. See “OPEN
Return Codes” in DFSMS/MVS Macro Instructions for Data Sets, SC26-4913. Alternatively, you
run the DELETE command again with the NOERASE option.

246 CAS service task abended or detected an abnormal condition. See reason code in the
messages manual.

248 A function requires a volume that is not owned by the VSAM catalog being
used.

250 VSAM Record Management has found a logical error during erase processing while deleting
a VSAM data set. The reason codes correspond to the VSAM record management logical error
code. See “Record Management Return and Reason Codes” in DFSMS/MVS Macro
Instructions for Data Sets, SC26-4913. Alternatively, you run the DELETE command again with
the NOERASE option.

254 An error was encountered during catalog reorientation. The reason code indicates in what part
the error was found: close (reason code 0), open (2), allocation (4) or an unexpected error (6).

Note: Reason codes, explanations, system actions and programmers response are described in
z/OS V1R4.0 MVS System Messages, Vol 6 (GOS-IEA) under IDC3009I message.

Return
Code

A brief explanation
 Chapter 3. VSAM problem determination and recovery 187

The output from the LISTCAT command is:

1IDCAMS SYSTEM SERVICES TIME:
21:15:46 04/20/00 PAGE 1
0
 LISTC ENTRY(DAWN.KSDSEXG) ALL
00044403
0CLUSTER ------- DAWN.KSDSEXG
 IN-CAT --- MCAT.SANDBOX.R9.VSBOX11
 HISTORY
 DATASET-OWNER-----(NULL) CREATION--------2000.108
 RELEASE----------------2 EXPIRATION------0000.000
 SMSDATA
 STORAGECLASS -----STRIPE MANAGEMENTCLASS---MCDB22
 DATACLASS ------KEYEDEXG LBACKUP ---0000.000.0000
 BWO STATUS------00000000 BWO TIMESTAMP---00000 00:00:00.0
 BWO---------------(NULL)
 RLSDATA
 LOG ----------------(NULL) RECOVERY REQUIRED --(NO)
 VSAM QUIESCED -------(NO) RLS IN USE ---------(NO)
0 LOGSTREAMID-----------------------------(NULL)
 RECOVERY TIMESTAMP LOCAL-----X'0000000000000000'
 RECOVERY TIMESTAMP GMT-------X'0000000000000000'
 PROTECTION-PSWD-----(NULL) RACF----------------(NO)
 ASSOCIATIONS
 DATA-----DAWN.KSDSEXG.DATA
 INDEX----DAWN.KSDSEXG.INDEX
0 DATA ------- DAWN.KSDSEXG.DATA
 IN-CAT --- MCAT.SANDBOX.R9.VSBOX11
 HISTORY
 DATASET-OWNER-----(NULL) CREATION--------2000.108
 RELEASE----------------2 EXPIRATION------0000.000
 ACCOUNT-INFO-----------------------------------(NULL)
 PROTECTION-PSWD-----(NULL) RACF----------------(NO)
 ASSOCIATIONS
 CLUSTER--DAWN.KSDSEXG
 ATTRIBUTES
 KEYLEN-----------------8 AVGLRECL-------------300
BUFSPACE-----------10240 CISIZE--------------4096

//LISTCAT JOB 'LISTCCAT EXAMPLE',NOTIFY=&SYSUID
//*--*
//EXAMPLE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 LISTC ENTRY(DAWN.KSDSEXG) ALL
188 VSAM Demystified

 RKP--------------------0 MAXLRECL-------------300
EXCPEXIT----------(NULL) CI/CA----------------192
 STRIPE-COUNT-----------4
 SHROPTNS(1,3) RECOVERY UNIQUE NOERASE INDEXED
NOWRITECHK NOIMBED NOREPLICAT
 UNORDERED NOREUSE NONSPANNED EXTENDED
 STATISTICS
 REC-TOTAL---------321595 SPLITS-CI-----------6466
EXCPS--------------82682
 REC-DELETED-------173530 SPLITS-CA-------------42
EXTENTS----------------4
 REC-INSERTED-------45123 FREESPACE-%CI---------10
SYSTEM-TIMESTAMP:
 REC-UPDATED--------56016 FREESPACE-%CA---------10
X'B3ECB2FDD72E7785'
 REC-RETRIEVED----3186326 FREESPC--------610766848
 ALLOCATION
 SPACE-TYPE---------TRACK HI-A-RBA-------736100352
 SPACE-PRI-----------3744 HI-U-RBA-------203685888
 SPACE-SEC------------624
 VOLUME
1IDCAMS SYSTEM SERVICES TIME:
21:15:46 04/20/00 PAGE 2
0 VOLSER------------SBOX31 PHYREC-SIZE---------4096
HI-A-RBA-------736100352 EXTENT-NUMBER----------1
 DEVTYPE------X'3010200F' PHYRECS/TRK-----------12
HI-U-RBA-------203685888 EXTENT-TYPE--------X'00'
 VOLFLAG------------PRIME TRACKS/CA--------------4
 STRIPE-NUMBER----------1
 EXTENTS:
 LOW-CCHH-----X'000A000A' LOW-RBA----------------0
TRACKS--------------3744
 HIGH-CCHH----X'01040003' HIGH-RBA-------736100351
 VOLUME
 VOLSER------------SBOX30 PHYREC-SIZE---------4096
HI-A-RBA-------736100352 EXTENT-NUMBER----------1
 DEVTYPE------X'3010200F' PHYRECS/TRK-----------12
HI-U-RBA---------------0 EXTENT-TYPE--------X'40'
 VOLFLAG------------PRIME TRACKS/CA--------------4
 STRIPE-NUMBER----------2
 EXTENTS:
 LOW-CCHH-----X'0104000B' LOW-RBA----------------0
TRACKS--------------3744
 HIGH-CCHH----X'01FE0004' HIGH-RBA-------736100351
 VOLUME
 VOLSER------------MHLV14 PHYREC-SIZE---------4096
HI-A-RBA-------736100352 EXTENT-NUMBER----------1
 DEVTYPE------X'3010200F' PHYRECS/TRK-----------12
HI-U-RBA---------------0 EXTENT-TYPE--------X'40'
 Chapter 3. VSAM problem determination and recovery 189

 VOLFLAG------------PRIME TRACKS/CA--------------4
 STRIPE-NUMBER----------3
 EXTENTS:
 LOW-CCHH-----X'0103000B' LOW-RBA----------------0
TRACKS--------------3744
 HIGH-CCHH----X'01FD0004' HIGH-RBA-------736100351
 VOLUME
 VOLSER------------SBOX28 PHYREC-SIZE---------4096
HI-A-RBA-------736100352 EXTENT-NUMBER----------1
 DEVTYPE------X'3010200F' PHYRECS/TRK-----------12
HI-U-RBA---------------0 EXTENT-TYPE--------X'40'
 VOLFLAG------------PRIME TRACKS/CA--------------4
 STRIPE-NUMBER----------4
 EXTENTS:
 LOW-CCHH-----X'0103000B' LOW-RBA----------------0
TRACKS--------------3744
 HIGH-CCHH----X'01FD0004' HIGH-RBA-------736100351
0 INDEX ------ DAWN.KSDSEXG.INDEX
 IN-CAT --- MCAT.SANDBOX.R9.VSBOX11
 HISTORY
 DATASET-OWNER-----(NULL) CREATION--------2000.108
 RELEASE----------------2 EXPIRATION------0000.000
 PROTECTION-PSWD-----(NULL) RACF----------------(NO)
 ASSOCIATIONS
 CLUSTER--DAWN.KSDSEXG
 ATTRIBUTES
 KEYLEN-----------------8 AVGLRECL---------------0
BUFSPACE---------------0 CISIZE--------------2048
 RKP--------------------0 MAXLRECL------------2041
EXCPEXIT----------(NULL) CI/CA-----------------21
 SHROPTNS(1,3) RECOVERY UNIQUE NOERASE NOWRITECHK
NOIMBED NOREPLICAT UNORDERED
 NOREUSE EXTENDED
 STATISTICS
 REC-TOTAL------------263 SPLITS-CI-------------42
EXCPS--------------39045 INDEX:
 REC-DELETED------------0 SPLITS-CA--------------1
EXTENTS----------------2 LEVELS-----------------3
 REC-INSERTED-----------0 FREESPACE-%CI----------0
SYSTEM-TIMESTAMP: ENTRIES/SECT----------13
 REC-UPDATED--------21884 FREESPACE-%CA----------0
X'B3ECB2FDD72E7785' SEQ-SET-RBA------------0
 REC-RETRIEVED----------0 FREESPC------------63488
HI-LEVEL-RBA------436224
1IDCAMS SYSTEM SERVICES TIME:
21:15:46 04/20/00 PAGE 3
0 ALLOCATION
 SPACE-TYPE---------TRACK HI-A-RBA----------602112
 SPACE-PRI-------------12 HI-U-RBA----------538624
190 VSAM Demystified

 SPACE-SEC--------------2
 VOLUME
 VOLSER------------SBOX31 PHYREC-SIZE---------2048
HI-A-RBA----------602112 EXTENT-NUMBER----------2
 DEVTYPE------X'3010200F' PHYRECS/TRK-----------21
HI-U-RBA----------538624 EXTENT-TYPE--------X'00'
 VOLFLAG------------PRIME TRACKS/CA--------------1
 EXTENTS:
 LOW-CCHH-----X'00000002' LOW-RBA----------------0
TRACKS----------------12
 HIGH-CCHH----X'0000000D' HIGH-RBA----------516095
 LOW-CCHH-----X'01040004' LOW-RBA-----------516096
TRACKS-----------------2
 HIGH-CCHH----X'01040005' HIGH-RBA----------602111
 VOLUME
 VOLSER------------SBOX30 PHYREC-SIZE---------2048
HI-A-RBA---------1032192 EXTENT-NUMBER----------1
 DEVTYPE------X'3010200F' PHYRECS/TRK-----------21
HI-U-RBA---------------0 EXTENT-TYPE--------X'40'
 VOLFLAG-------CAND-SPACE TRACKS/CA--------------1
 EXTENTS:
 LOW-CCHH-----X'01FE0005' LOW-RBA-----------516096
TRACKS----------------12
 HIGH-CCHH----X'01FF0001' HIGH-RBA---------1032191
 VOLUME
 VOLSER------------MHLV14 PHYREC-SIZE---------2048
HI-A-RBA---------1548288 EXTENT-NUMBER----------1
 DEVTYPE------X'3010200F' PHYRECS/TRK-----------21
HI-U-RBA---------------0 EXTENT-TYPE--------X'40'
 VOLFLAG-------CAND-SPACE TRACKS/CA--------------1
 EXTENTS:
 LOW-CCHH-----X'01FD0005' LOW-RBA----------1032192
TRACKS----------------12
 HIGH-CCHH----X'01FE0001' HIGH-RBA---------1548287
 VOLUME
 VOLSER------------SBOX28 PHYREC-SIZE---------2048
HI-A-RBA---------2064384 EXTENT-NUMBER----------1
 DEVTYPE------X'3010200F' PHYRECS/TRK-----------21
HI-U-RBA---------------0 EXTENT-TYPE--------X'40'
 VOLFLAG-------CAND-SPACE TRACKS/CA--------------1
 EXTENTS:
 LOW-CCHH-----X'01FD0005' LOW-RBA----------1548288
TRACKS----------------12
 HIGH-CCHH----X'01FE0001' HIGH-RBA---------2064383
1IDCAMS SYSTEM SERVICES TIME:
21:15:46 04/20/00 PAGE 4
0 THE NUMBER OF ENTRIES PROCESSED WAS:
 AIX -------------------0
 ALIAS -----------------0
 Chapter 3. VSAM problem determination and recovery 191

 CLUSTER ---------------1
 DATA ------------------1
 GDG -------------------0
 INDEX -----------------1
 NONVSAM ---------------0
 PAGESPACE -------------0
 PATH ------------------0
 SPACE -----------------0
 USERCATALOG -----------0
 TAPELIBRARY -----------0
 TAPEVOLUME ------------0
 TOTAL -----------------3
0 THE NUMBER OF PROTECTED ENTRIES SUPPRESSED WAS 0
0IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0
0
0IDC0002I IDCAMS PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS 0

Use the output from the LISTCAT command listed above to follow the
explanations about the most key catalog fields shown by LISTCAT.

3.8.1 High used RBA value (HURBA) for KSDS
There are two HURBAs per KSDS cluster: the data HURBA, and the index
HURBA:

� Data HURBA

This is the RBA of the physically highest record in data CI (it does not imply
the highest key, because the existence of splits). In other words, it points to
the end of the last CA which ever, at any time, contained data. It is
incremented by one CA, if a CA split or add-to-the-end in a new CA occurs. It
is always on a CA boundary.

If all logical records are deleted the HURBA does not turn to zero — only via
create or resetting. Also, if the data set was defined with the Reuse option, in
this case at Open time, HURBA is reset to zero.

When share option cross-system 4 is set to the data set, this value cannot be
modified.

If a data set has HURBA=0, it cannot be opened for input.

� Index HURBA

This points to the end of the last index CI written. It is incremented by one CI
if a new record is added to the index. Separate HURBA values are maintained
for the imbedded sequence set, and the high level index if IMBED is used.
Index HURBA is always on a CI boundary.
192 VSAM Demystified

There are also two types of data components:

� ESDS data component

The HURBA points to the end of the last CI which contains data. It is
incremented by one CI, if a new CI is entered via add-to-end processing.

It is always on a CI boundary.

� RRDS data component

The HURBA points to the end of the last CA which ever contained data. It is
incremented by add-to-end processing which enters a new CA, or by direct
insert of a record whose slot number resolves to a new CA.

It is always on a CA boundary.

The name, HURBA, does not mean that every byte up to the HURBA is used.
There may be imbedded free space due to distributed space, record deletion,
slots which have never been used (RRDS) as well as unused space at the end of
the CI or CA. The HARBA is an RBA pointer to the end of the last current extent
of that cluster component. Until the HURBA equals the HARBA for that
component, another extent will not be taken.

3.8.2 High allocated RBA value (HARBA)
This is the highest RBA available within allocated space to store the data
component, its key range, the index component, or the sequence set records of a
key range. KSDS has two HARBAs: one for the index; another for data.

The difference (HARBA - HURBA) is the amount of space ready to be freed by
the free space release option after close. It includes all the CAs in the physical
end of the data sets with only free CIs.

3.8.3 FREESPC
This is the actual number of bytes of free space in the total amount of space
allocated to the data or index component. Free space in partially used control
intervals is not included in this statistic.

3.8.4 High key RBA/CI
It is the RBA of the logically highest data CI (the one with the record with the
highest key). When the cross-system SHAREOPTION 4 is set to the data set,
this value cannot be modified.
 Chapter 3. VSAM problem determination and recovery 193

3.8.5 High-level index RBA value
Any time the data set is accessed directly through a key, VSAM uses this value to
find the highest level index record to start the search through lower levels.

If the high-level index RBA is corrupted, the user will not be able to perform direct
requests against the data set.

3.8.6 Sequence set first RBA value
If the data set is being read sequentially, from start to finish (for example,
REPRO), VSAM uses this value to go directly to the first sequence set record. If
Sequence Set RBA is corrupted sequential access will not be possible.

3.8.7 Number of index levels
The number of levels of index records in the index. for an KSDS/VRRDS cluster.
If this number is greater than four (meaning a very big data set), maybe it is an
indication for reorganization increasing the size of the CI index.

3.8.8 Time stamps
At close time, if the cluster is open for output, the KSDS time stamps are updated
with the current system time (same value for both data and index). However,
each component¢s individual time stamp is updated in the catalog only if it is
greater than the component's time stamp currently in the catalog. Prior to
updating time stamps IN THE CATALOG, Close writes SMF record type 64. The
time stamp ordering the SMF record should slightly precede that in the catalog.

At Open time, if the time stamp of the index component is less than that of the
data component, the data component is updated separately and after the index
component, or vice-versa.

3.9 SMF record types related to VSAM data sets
Following are the SMF records related to VSAM recovery and VSAM
performance.

3.9.1 SMF record type 60
Record type 60 is written when a record is inserted, updated, or deleted from a
VSAM Volume Data Set (VVDS). For example, when a VSAM cluster is defined,
closed, or deleted.
194 VSAM Demystified

VVDS is a part of ICF catalog structure (the other is BCS), located in the volume
which contains the described data sets. It contains dynamic information, as
statistics, about these data sets. VSAM data sets and SMS data sets must be
cataloged in an ICF catalog. The record related to a VSAM data set is a VSAM
Volume Record (VVR), while the record related to non-VSAM data sets is a
Non-VSAM Volume Record (NVR).

One type 60 record is written for each VVR or NVR written or deleted. This
record:

� Identifies the VVDS in which the VVR or NVR is written or deleted.
� Gives the new, updated, or deleted VVR or NVR.
� Identifies the job by job log and user identifiers.

3.9.2 SMF record type 61
One type 61 record is written for each record inserted or updated in a catalog.
This record:

� Identifies the entry being defined and the catalog in which the catalog record
is written.

� Gives the new or updated catalog record.

� Identifies the job by job log and user identifiers.

3.9.3 SMF record type 62
Record type 62 is written at the successful or unsuccessful opening of a VSAM
component or cluster. The record:

� Identifies the VSAM component or cluster.

� Indicates whether it was successfully opened.

� Names the VSAM catalog in which the object is defined and the volumes on
which the catalog and object are stored.

� It identifies the job that issued the OPEN macro by job log identification and
user identification.

This record is not generated when a system task issues the OPEN macro.

3.9.4 SMF record type 63
Record type 63 is written when a VSAM catalog entry (a component, cluster,
catalog, alternate index, path, or non-VSAM data set) is defined by the DEFINE
Access Method Services command and when that definition is altered. For
example, when a VSAM catalog entry is altered with new space allocation
 Chapter 3. VSAM problem determination and recovery 195

information (that is, when the VSAM End-Of-Volume (EOV) routine extends the
entries object) or, if the entry is changed by the Alter Access Method Services
command. One record type 63 is written for each newly created or altered entry.
This record is not written when a VSAM catalog is renamed. In that case record
type 68 is written. This record:

� Identifies the catalog in which the object is defined.

� Gives the catalog record for the newly defined object, and, for an alteration,
gives the parts of the old catalog record before they were altered.

� Identifies the job and the user that caused the record to be written. If it was
caused by a system task, the job-name and the user-identification fields
contain blanks and the time and date fields contain zeros.

3.9.5 SMF record type 64
Record type 64 is written when:

� A VSAM component or cluster is closed.
� VSAM must switch to another volume to continue to read or write.
� The component ran out of space and EOV is called to extend the component.

When a cluster is closed, one record is written for each component in the SMF
record type 64. The reason why the record was created is indicated in the record.

SMF record type 64 description
The record describes the device and volume(s) on which the object is stored, and
gives the extents of the object on the volume(s). It gives statistics about various
processing events that have occurred since the object was defined, such as the
number of records in the data component, the number of records that were
inserted, and the number of control intervals that were split.

The record written when the VSAM component or cluster is closed contains
changes in statistics from OPEN to time of EOV and CLOSE.

SMF64 sample program
The IDCAMS LISTCAT command shows the cumulative number of EXCPs, since
the initial load. Sometimes is more important to know the number of EXCPs
executed between OPEN and CLOSE, mainly when you are doing tuning in
buffering. The section “Sample programs extract from SMF record type 64” on
page 367, contains sample source assembler code. It can be used for showing
more information about your VSAM data sets. By using JCL parameters, you can
determine an EXCPs threshold. Then, the program only shows data covering the
data sets with equal or more EXCPS than the threshold that occurred between
open and close. The report generated is based on the SMF 64 record, generated
196 VSAM Demystified

each time a VSAM data set is closed. It can help you to determine the
characteristics of the data sets with high I/O activity. To reduce the I/O activity:

� You can use SMB if the data sets are already in extended format.

� You can convert data sets to extended format and then use SMB.

� In the case of LSR buffering and direct access, you can find out if the data
sets are using defer write, and if not, whether they could be.

� You can determine whether the VSAM buffers are below 16 MB, and whether
to move them above 16 MB.

� For KSDS and VRRDS data sets, when the total number of free control
intervals is much higher than free space defined to the data set consider
reorganization. Do not reorganize data sets if it is not necessary.

� When doing changes in buffering, you can use the report to see how the
numbers of EXCPs decreased.

For a description of SMF type 64 fields, refer to OS/390 MVS System
Management Facilities (SMF), GC28-1783.

3.9.6 SMF record type 65
Record type 65 is written during any processing that results in a DELETE request
to Catalog management services, such as:

� IDCAMS DELETE
� IEHPROGM UNCATLG

One type 65 record is written for each record updated or deleted from a catalog.
The record:

� Identifies the entry being deleted.

� Identifies the catalog in which the catalog record is updated or deleted.

� Gives the updated or deleted catalog record.

� Indicates whether a VSAM cluster or non-VSAM data set was scratched, or
whether only catalog information was deleted.

� Identifies the job and the user. If a system task caused the record to be
written, the job name and user identification fields contain blanks, and the
time and date fields contain zeros.

3.9.7 SMF record type 66
Record type 66 is written during any processing that results in an ALTER request
to Catalog Management Services, such as IDCAMS ALTER.
 Chapter 3. VSAM problem determination and recovery 197

One type 66 record is written for each record written or deleted from a catalog.
The record:

� Identifies the entry being altered.

� Identifies the catalog in which the catalog record is written or deleted.

� Gives the new, updated, or deleted catalog record.

� Indicates if the entry was renamed and, if so, gives the old and new names of
the entry.

� Identifies the job and the user. If a system task caused the record to be
written, the job name and user identification fields contain blanks and the time
and date fields contain zeros.

3.9.8 SMF record type 67
Record type 67 is written when a VSAM catalog entry (a component, cluster,
catalog, alternate index, path, or non-VSAM data set) is deleted. A record is
written for each entry affected by the DELETE Access Method Services
command. For example, three records are written for an indexed cluster; one for
the relationship between the components of the cluster, one for the data
component, and one for the index component. The record:

� Identifies the deleted entry.

� Identifies the VSAM catalog in which the entry was defined.

� Gives the total logical VSAM catalog record.

� Identifies the job and user that caused the record to be written. If it was
caused by a system task the job-name and the user-identification fields
contain blanks and the time and date fields contain zeroes.

3.9.9 SMF record type 68
Record type 68 is written when a VSAM catalog entry (a component, cluster,
catalog, alternate index, path, or non-VSAM data set) is renamed using the
ALTER Access Method Services command. This record:

� Identifies the VSAM catalog in which the object is defined.

� Gives the old and new names for the object.

� Identifies the job and user that renamed the data set. If a system task caused
the record to be written, the job-name and user-identification fields contain
blanks and the time and date fields contain zeros.
198 VSAM Demystified

3.9.10 SMF record type 69
Record type 69 is written when a VSAM data space is defined, extended, or
deleted using the DEFINE or DELETE Access Method Services commands.
Record type 69 is not written when a catalog or a unique data set is defined or
deleted. This record:

� Identifies the catalog in which the data space is defined.

� Identifies the volume on which it is (or was) allocated.

� Gives the number of free data space extents and the amount of unallocated
space on the affected volume after the definition, extension, or deletion.

� Identifies the job and the user that caused the record to be written. If it is
caused by a system task, the job-name and user-identification fields contain
blanks and the time and date fields.

3.9.11 SMF record type 42
This record provides VSAM record level sharing (RLS) statistics.

3.10 RRMS and VSAM
S/390 provides Resource Recovery Management Services (RRMS), comprising:

� Resource Recovery Services (RRS), which provide sync-point services.

� Registration Services, which allow a resource manager to define itself to the
operating system.

� Context services, which allow a resource manager to indicate interest in a
work context. A context represents the resources for a work request; a context
consists of the application program requesting the work and the protected
resources involved in the work. A context represents a business unit of work:
one or more units of recovery with the associated application programs,
resource managers, and protected resources.

RRS is an OS/390 component capable to coordinate Resource Recovery in
MVS.

Resource recovery includes a set of APIs and protocols allowing a transaction
executing an application program to modify consistently multiple protected
resources. The most common is 2-phase commit protocol.

Among these resources, we may have databases, VSAM data sets, and any
product specific resource, managed by distinct resource managers. These
resource managers maybe located in different systems.
 Chapter 3. VSAM problem determination and recovery 199

Resource recovery scenarios has three agents:

� Application Program (AP): Requests the changes.

� Resource Manager (RM): Controls the access to the resource, for example,
Data Manager (DB2, DL/I, VSAM) and Work Manager (CICS, IMS/DC).

� Synchpoint Manager (SM) guarantees resource recovery by the
implementation of 2-phase commit. RRS is an example of an SM.

When an AP is running the same unit of work (transaction) under CICS and
IMS/DC, it is able to update multiple data located in DB2, DL/I, VSAM files. In this
case, there is not a need for RRS, because the SM role is executed by CICS or
IMS/DC through the Commit and Rollback functions.

RRS allows Resource Recovery (2-phase commit) when an unit of work crosses
multiple subsystems (MQSeries®, CICS, IMS) and multiple OS/390 images.

Unit of recovery (UR) is a set of changes that all must be done or none is done. It
guarantees the integrity of the updates.

Two-Phase Commit Protocol aims the execution of an UR, that is, all or nothing.
Has two phases:

� Phase 1:

– App informs the changes to RMs.

– RMs log the old (UNDO) and the new (REDO) data.

– AP asks a commit to Synchpoint Manager.

– Synchpoint Manager asks RMs if they can commit (prepare commit). If all
say “yes”, then Synchpoint Manager hardens the commit in its journal. If
not all say “yes”, the commit is not hardened, and the backout is
commanded at once to the RMs (erase the log) at phase-2.

� Phase 2:

– Synchpoint Manager orders the commit (if hardened) or the backout
(if not hardened) of the changes represented by the UR.

– If all RMs return OK, Synchpoint Manager returns a return code
committed to the AP. If not, then application changes will be made during
restart.

Then, along a 2-phase commit, we may have two functions: commit or backout.

In a pure VSAM application guaranteeing the APIs for a 2-phase commit when
you want to implement a unit of recovery, due to updates in multiple VSAM data
sets, you will find the RRs to be very helpful.
200 VSAM Demystified

For more information, refer to OS/390 V2R8.0 MVS Programming: Resource
Recovery, GC28-1739.
 Chapter 3. VSAM problem determination and recovery 201

202 VSAM Demystified

Chapter 4. Managing your VSAM data
sets

In this chapter we provide practical tips related to the daily maintenance of your
VSAM data sets:

� Reorganization

� VSAM data sharing

� Extended Addressability

� Processing VSAM data sets: Media Manager, OPEN, CLOSE

� Record Management: GET, PUT, EOV routine

� VSAM using real address above 2 GB

4

© Copyright IBM Corp. 2001, 2003. All rights reserved. 203

4.1 Reorganization considerations
The new DASD storage technology is characterized by:

� Numerous high-capacity, small-size FBA, SCSI/SSA disks

� Redundancy in different types of RAID

� Generous amounts of cache, mainly to avoid the write penalty caused by
RAID

� Plenty of microcode in order to support RAID, cache algorithms, the mapping
between the disks and the logical 3390/3380 volumes (as seen by z/OS), and
in the RVA case, the virtualization of the 3390/3380

Because of that, all the old considerations to avoid long seeks and RPS misses
in a 3390/3380 logical volume are out of date. Does this apply to VSAM KSDS
need of reorganization? Let us look at all the performance reasons (old and new)
justifying the VSAM reorganization.

4.1.1 CI/CA splits
Consider CI/CA splits, causing long seeks in the data set — this reason does not
hold true in the new disk controller scenario. Do not reorganize your KSDS or
VRRDS data set to avoid long seeks.

Usually, the worst part of the split is when it occurs. After that, the data set has
more space for insertions and normally the quantity of splits tend to decrease.
Try to avoid splits, if not possible, do not reorganize only because splits occurred.
Monitor the response time and the growing in the number of CA splits. Chances
are that, after reorganization, the number of splits will increase.

4.1.2 The loss of useful space in Data CA
The reasons causing this type of waste are:

� There is no CA reclaim in VSAM KSDS/VRRDS for those CAs that became
free before HURBA. Let’s see why in Figure 4-1 on page 205

In the Index set, each CI has only one record. Each record has a pointer to
the highest possible key in an index record in the next lower level, and a
pointer to the beginning of that index record.

The sequence set is the lower level of the index, where the pointers are to
data CI. In the sequence set, each index CI contains only one record. Each
record governs one CA and has pointers to each used data CI, its higher
possible key value (in compressed form) and pointers to free data CI in the
data CA.
204 VSAM Demystified

Then, for example, if at load time an specific data CA was loaded with records
belonging to a specific key range and later on the majority of them are deleted
(and not re-utilized, as a timestamp key), the CA is underpopulated, and this
free space is not reclaimed. The free space pointers are in the index
sequence set records, but can be used only by keys in that range.

Figure 4-1 Indexes of KSDS

How do we measure that? To answer this question, refer to 3.8, “IDCAMS
LISTCAT output fields” on page 187, and the diagram shown in Figure 4-2, as
you follow along with our explanation.

Control
 Interval

2 5 7

8 9

12 13 14

15 16 19

22 23 26

31 35 38

H
D
R

7 11 14 21 30 38

HDR 38 67

Control Area
Control Area Control Area

39 41 43

44 45 46

51 53 54

55 56 57

58 61 62

65 66 67

 68 69

72 73 74

76 77 78

79 80 85

86 89

93 94 95

H
D
R

43 50 54 57 64 67
H
D
R

 71 75 78 85 92 95 Sequence
Set

Index
Component

Data
Component

HDR 95 348

HDR 67 348

Index
Set

H
D
R

 Chapter 4. Managing your VSAM data sets 205

Figure 4-2 HARBA, HURBA, and free space

From this diagram showing HARBA, HURBA, and free space, you can see:

The subtraction, HARBA - HURBA = X, gives the amount of free bytes in the
free CIs allocated in the CAs beyond HURBA.

If you subtract FREESPC - X = Y, it gives the amount of free bytes in free CIs
embedded in CAs included in HURBA.

Y includes the CA Freespace%, 25%, for example.

If (Y / HURBA) * 100 is consistently greater than CA Freespace% (25%), and
the number of deleted records (in catalog) is a large figure, it means that it is
time to reorganize due to non-reclaimed CAs.

Here is a numeric example:

HI-A-RBA-------184320000 (HARBA)
HI-U-RBA-------176209920 (HURBA)
FREESPACE-%CA---------10
FREESPC---------89616384

FR EE

Type text

Type text

FR EE

Type text

Type text

Type text

FREE

Type text

Type textType text

FREE

Type text

Type text

FR EEFREE

Type textFREE Type text

FR EEFREE

Type textFREE Type text

FR EEFREE

Type textFREE

FREE

Type textFREE

FR EEFREE

Type textFREE

FREE

Type textFREE

FR EEFREE

Type textFREE

Type textFREE

FR EEFREE

Type textFREE

Type textFREE

Type textFREE

CI size = 4k
HARBA = 16 x 4k = 64k
HURBA = 12 x 4k= 48k
HARBA - HURBA = 16k
FREESPACE = 11 x 4k = 44k
44k - 16k = 28k (7 CIs)

28/48 x 100 > > 25%

58% > > 25% THEN, REORG

HURBA

WHEN TO REORGANIZE

HARBA
206 VSAM Demystified

In view of these figures, is it time for a reorganization?

A strong argument to reorganize is the knowledge that those deleted keys are
not going to be inserted again.

� Another reason to reorganize, is when the Index CI size is defined too small
and is not big enough to contain information about all the data CIs in the data
CA. An example is shown in Figure 4-3. In this case the CA is truncated and
the rest is unused. In such a case, you have to redefine the data set with a
larger index CI size.

Figure 4-3 Lost space in data CA due to Index CI size too small

How do we measure that? The only way to distinguish between wasted CAs
due to smaller index CIs or due to deletions is the previous knowledge of the
deletions. Then:

– If (Y / HURBA) * 100 is consistently greater than CA Freespace% and the
number of deleted records in the catalog is a small figure, it is time to
reorganize, due to the small size of the index CIs. The index CI size must
be re-specified as a larger value.

– DFSMShsm issues message ARC0909E advising that is time to
reorganize the VSAM data set, due to a free space threshold being
reached.

Control Information

 8 9 11 12 13 14
 15 17 18 20 21 23
 25 26 27 28 29 30
 31 32 33 35 36 FS
39 40 41 42 43 44
 45 46 47 48 49 50

F
r
e
e

S
p
a
c
e

Lost
Space
in CA

51 52 53 54 55 57
 58 59 61 65 66 68
 72 73 74 75 76 77
 78 79 80 81 82 83
84 85 86 87 88 89
 90 91 92 93 94 95

 14 23 30 37 44 50
H
D
R

 57 68 77 83 89 95
H
D
R

 50 95
H
D
R

H
D
R

Sequence
Set

Index
Set

Free Space

Index Record
 Chapter 4. Managing your VSAM data sets 207

� In z/OS V1 R3, VSAM changed the algorithm to calculate the KSDS and
VRRDS index component minimum CI size, when the Index CI size is not
informed in DEFINE command. The higher key value in a data CI is stored in
compressed format in the Index CI record. The previous algorithm assumed
that, after compression, the keys would reduce the size of keys to
approximately 5 bytes. With this assumption, for data sets with large keys, the
index CI records are bigger and the Index CI size may not be enough to point
all Data CIs in a Data CA. In such case, the Data CA is under utilized. Since
z/OS V1 R3, VSAM assumes that keys have a compression rate 3:1. Then,
for example, a key with 21 bytes, after compression has 7 bytes, and so on.

For those data sets defined before z/OS V1 R3 and having large keys, you
can have data CA under utilized. How do you find these data sets? IBM
supplied a tool to help migration to z/OS V1 R3. This IBM tool searches the
catalog information for those data sets whose mask is passed in SYSIN DD
statement and reports, by data set name, the current index CI size and the
new index CI size according to new algorithm.

For more information about changes in the index CI size calculation, refer to
“New Index CI size calculation algorithm” on page 208.

4.1.3 CI/CA splits causing free space increase
After CI and or CA splits the free space per CI (excluding the totally freed) tends
to increase. In sequential read processing there is some impact on performance
because more free bytes are moved to storage. Refer to 2.7.4, “I/O service time
(connect) for VSAM data sets” on page 129.

How do we measure that? By the number of CI and CA splits in the catalog,
together with the free space information.

A general comment about CI/CA splits is that their number usually grows steady,
after reorganization. But do not be surprised if, after reorganization, the number
of splits increases. It means that before reorganization, the data set had better
CI/CA space for insertions.

4.2 New Index CI size calculation algorithm
Use your automation console function to detect the message in Figure 4-4,
generating an alert.
208 VSAM Demystified

Figure 4-4 Message due to index CI size too small

After that, carefully read this topic.

VSAM uses a default minimum value for index CI size, if it determines that the
one specified by you is not large enough. The algorithm that calculates this value
was changed in z/OS V1 R3.

This change was to increase the likelihood that the index CI would be large
enough to hold all the keys that can exist in a data CA. In a number of situations
the default value calculated was not large enough. Because of this, there was a
lot of space wasted in the VSAM data set that cannot be used. Also, this forced
unnecessary increase in index levels and impacted the performance.

As you know, VSAM compresses the key value when stored the key in the index
record. The previous algorithm for determining the minimum size always
assumed that all data keys compressed to 5 bytes; in reality they were often
much larger. The new algorithm assumes a 3:1 compression of the keys, for
example that 45-byte keys compress to 15 bytes in the index record. So the
newly computed CI sizes will be higher.

This change does not bring impact on existing data sets. But the new default
value is used for any new VSAM data set created under z/OS 1.3 or higher. This
also applies to any data sets created because of backup-restore or migrate-recall
operations.

The main implication of this change is for applications that open data sets in LSR
mode. VSAM data sets opened in LSR mode, might fail with IEC161I 120-053, if
the buffer pool created by BLDVRP macro is not large enough to contain the
increased CI sizes.

CICS and IMS open VSAM data sets in LSR mode. You may need to review
LSRPOOL definition for CICS and DFSVSAMP definition for IMS. Both CICS and
IMS use these definitions to determine the size of the buffer pool to be created by
BLDVRP. This could lead to database open failures or poor performance.

If you are using VSAM RLS, there is not such issue because in RLS, SMSVSAM
builds it's own pools for data sets.

If you are letting CICS calculate the number of buffers in your LSR buffer pools,
then you should have no problem. If you are explicitly coding the number of

IDC3351I ** VSAM I/O RETURN CODE IS 212
Unable to split index; increase index CI size
 Chapter 4. Managing your VSAM data sets 209

buffers of each size in the LSRPOOL then you should review the number of
buffers you specify.

4.2.1 Analyze existing data sets
You need to analyze your VSAM data sets and compare the current index CI size
with the new value computed by z/OS V1 R3. We recommend you specify CI
sizes for both index and data components of your VSAM data sets and compute
the new value for the index CI size. If you do not do it, the index CI size of your
VSAM data sets will change to the new value when they get redefined.

Sample program to identify LSR mode data sets
You need to identify all applications that open VSAM data sets in LSR mode and
review the possibility of change in index CI size. To identify data sets opened in
LSR mode, you can use the SMF 62 and 64 records. The fields SMF62MC3 and
SMF64MC3 hold a one byte value. If the byte is in the format B'x1xxxxxx' then
this indicates the data set was opened or closed in LSR mode. These records
also include the data set name and jobname. You may also use the sample code
In the “SMFLSR sample program” on page 380, to generate a list of data sets
opened in LSR mode.

IBM CI sizer tool
IBM provides a tool to analyze your existing VSAM data sets. This tool gives a
report showing:

� Data set name
� Current index CI size
� Minimum (default) index CI size
� Data CI size
� Data set creation date

See Figure 4-5 for a sample output of this tool.
210 VSAM Demystified

Figure 4-5 Sample output of the CISIZE tool

The tool name is INDXCISZ and can be downloaded to your MVS system from
IBM FTP site as follows:

� Allocate a data set with LRECL=1024,BLKSIZE=6144,RECFM=FB,
DSORG=PS and RECFM=FB.

� Enter the TSO ftp command.

� At the Connect to? prompt, enter: ftp.software.ibm.com

� At the NAME prompt, enter: anonymous

� At the PASSWORD prompt, enter your e-mail address.

� At the Command prompt, enter: cd s390/mvs/tools

� At the Command prompt, enter: binary

� At the Command prompt, enter: get INDXCISZ.JCL.TRSD 'your data set’

� Once the file is placed on your MVS system, you need to unterse it.

� You need to use TRSMAIN program to unterse the file.

� The TRSMAIN program can be downloaded from:

http://techsupport.services.ibm.com/390/trsmain.html

You can also download it using a batch job. For a sample job to download the tool
and unterse it, see Figure 4-6.

 LISTING FOR FILTER KEY: U705040.**
 DATA SET NAME CURRENT PRE-1.3 1.3+
DATA CI CREDT
 U705040.DDIR 512 512 2560
18432 2001.114
 U705040.INFI.SDIDS 2560 2560 3072
2048 1989.278
 U705040.INFO420.SDIDS 4096 4096 5120
1024 1991.260
 THE NUMBER OF ENTRIES PROCESSED WAS:
 TOTAL CLUSTERS: 24
 TOTAL AIX: 0
 KSDS PROCESSED: 20
 INDEX CISIZE CHANGE: 3
 SKIPPED DUE TO ERRORS: 0
 SKIPPED (OFFLINE): 0

SKIPPED DUE TO FIELDS: 0
 Chapter 4. Managing your VSAM data sets 211

http://techsupport.services.ibm.com/390/trsmain.html

Figure 4-6 Job to download the CISIZE tool

The untersed file contains instructions for link editing and executing the tool. It
will tell you the current CI size and recommended CI size for your selected VSAM
data sets.

4.3 Sharing VSAM data sets
In this section we discuss the sharing of VSAM data sets from one address
space throughout a Parallel Sysplex® and what that it implies, such as level of
data integrity, MVS enqueues, VSAM mechanisms to protect data integrity, and
SHAREOPTIONS.

To protect the integrity of your VSAM data sets, VSAM uses internal locks and
issues ENQs in SYSVSAM major name, which invokes the MVS Enqueue

//MHLRES1E JOB (999,POK),MSGLEVEL=1,NOTIFY=MHLRES1
//ALLOC EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=(*)
//DD1T DD DISP=(NEW,CATLG,KEEP),SPACE=(CYL,(2,1),RLSE),
// DCB=(LRECL=1024,BLKSIZE=6144,RECFM=FB),UNIT=SYSDA,
// DSORG=PS,
// DSN=MHLRES1.INDXCISZ.TERSED
//DD1U DD DISP=(NEW,CATLG,KEEP),SPACE=(CYL,(2,1),RLSE),UNIT=SYSDA,
// DSORG=PS,
// DSN=MHLRES1.INDXCISZ
//FTP EXEC PGM=FTP,REGION=4096K,
// PARM='FTP.SOFTWARE.IBM.COM (TIMEOUT 720 EXIT'
//SYSMDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//INPUT DD *
ANONYMOUS
xxxx@yyy.zzz.com
binary
CD /s390/mvs/tools/
dir
binary
get INDXCISZ.JCL.TRSD 'MHLRES1.INDXCISZ.TERSED' (replac
quit
/*
//TRSMAIN EXEC PGM=TRSMAIN,PARM='UNPACK',TIME=1440
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//INFILE DD DISP=SHR,DSN=MHLRES1.INDXCISZ.TERSED
//OUTFILE DD DISP=SHR,DSN=MHLRES1.INDXCISZ
212 VSAM Demystified

Manager routine to serialize the resource locally. To serialize the full cluster
across systems, it is required to have the Global Resource Serialization (GRS) or
an equivalent product with the caution of not placing SYSVSAM resource name
in RNL exclusion list.

Some of the consequences of placing SYSVSAM in the exclusion list include:
loss of records, overlaid records, duplicate records, invalid index structures,
invalid catalog records, invalid data set dumps, backups, restores, or migrations,
incorrect extends of the data set, and incorrect release of space in the data set.

The major name SYSVSAM is used to serialize lots of resources in VSAM, Here
are some examples:

� Enforce VSAM SHAREOPTIONS.

– VSAM no longer determines whether any user has a data set open on
other systems.

� Serialize OPENS, CLOSES, or EOVs.

– Multiple OPENS, CLOSES, or EOV requests can now occur at the same
time on multiple systems.

– Multiple extends of a data set can now occur on multiple systems.

� Serialize dynamic string addition.

– It is no longer possible to serialize dynamic string additions with other
dynamic string additions and with OPEN/CLOSE/EOV.

� Serialize catalog updates.

– A user can no longer determine if the data set is open on another system
so that the catalog can be correctly updated.

– Users cannot correctly serialize catalog updates of data set compression
tokens.

� You cannot correctly determine the status of a data set for DELETE and
RENAME processing.

� HSM cannot correctly serialize migrations with VSAM OPEN/CLOSE/EOV.

� Serialize DFDSS dump/restores. DSS cannot correctly serialize
DUMP/BACKUP/RESTORE with VSAM OPEN/CLOSE/EOV.

� Partial release. VSAM CLOSE cannot determine when the last user for a data
set is closing the data set in order to correctly implement PARTIAL RELEASE.

� Recognize close failures in order to warn the user.

– VSAM OPEN cannot determine whether the data set was improperly
closed.

– May not warn users of a close failure.
 Chapter 4. Managing your VSAM data sets 213

– May not attempt to determine correct end of the data set.

� Support VSAM Record Level Sharing (RLS). Unable to enforce RLS/non-RLS
sharing rules.

Returning to sharing, you can share VSAM data sets between:

� Many task programs running in different address spaces, in a single operating
system. Some tasks may be running the same program, accessing the same
VSAM data set. For example, data set Teka in Figure 4-7.

� Many task programs running in the same address space. Multiples ACBs
pointing to same VSAM data set, like data set Tita, in Figure 4-7.

� One ACB shared in a task or different subtasks, in the same address space,
as an example, with multistring processing.

� Different tasks in different z/OS images. As an example, data set Prica in
Figure 4-7.

Figure 4-7 Sharing VSAM data sets in the Parallel Sysplex

The Enqueue Manager is an MVS component. It does not care about the nature
of the resource but only about its symbolic name, that is formed by its Major (also
known as Qname) and Minor name (Rname). The serialization is done in the
resource symbolic name and the type of serialization indicates the protection of
the resource:

TITA

NINA

TEKA

coupling
Facility

OPEN ACB1
OPEN ACB2
OPEN ACB3

//ACB1 DD DSN=TITA,DISP=SHR

//ACB2 DD DSN=NINA,
// DISP=SHR,RLS=CR

//ACB3 DD DSN=TITA,DISP=SHR

OPEN ACB9
OPEN ACB10

//ACB4 DD DSN=TEKA,DISP=SHR
//ACB11 DD DSN=PRICA,
// DISP=SHR

OPEN ACB5
OPEN ACB6
ACB6 MACRF=GSR

//ACB5 DD DSN=NINA,
// DISP=SHR,RLS=CR

//ACB6 DD DSN=TEKA,DISP=SHR

SYSA SYSB

OPEN ACB7
OPEN ACB8
ACB8 MACRF=GSR

//ACB7 DD DSN=NINA,
// DISP=SHR,RLS=CR

//ACB8 DD DSN=NINA,DISP=SHR

OPEN ACB4
ACB4 MACR=GSR
OPEN ACB11

//ACB9 DD DSN=NINA,
// DISP=SHR,RLS=CR
//ACB10 DD DSN=PRICA,
// DISP=SHR

CICS A

JOB 3

CICS B

JOB 1

JOB 2

PRICA
214 VSAM Demystified

� When SHARED, any other shared access is permitted and any exclusive
access is denied or queued until the resource becomes available.

� When EXCLUSIVE, the Enqueue Manager guarantees only the task owning
the resource can use it. Any other request to the same resource, no matter if
it is exclusive or shared, it is denied.

The scope of the enqueue indicates if the resource is serialized at address space
level (scope STEP), at system image level (scope SYSTEM) or sysplex wide
(scope SYSTEMS), which implies GRS.

Before you define the level of sharing for a VSAM data set, you must evaluate the
consequences of reading incorrect data (a loss of read integrity) and writing
incorrect data (a loss of write integrity). These are situations that can result when
one or more of the data set's users do not adhere to guidelines recommended for
accessing shared data sets. On the other hand, it is important to avoid the
unnecessary use of certain serialization functions which may cause a
performance degradation.

4.3.1 Write and read integrity
When you share a VSAM data set in the same task program, or among task
programs running in same or different address spaces, from the same or different
z/OS images, there is a need to inform what type of integrity (read and/or write) is
required.

Write integrity
Write I/O operation should guarantee integrity for non-atomic writes (the writes
executed in multiple I/O operations), for example:

� Logical record update in-place, where a record is read, updated in memory
and written back

� CI index updates due to CI data insertions and deletions (KSDS/VRRDS)

� CI and CA splits, which involves several write I/O operations

� Data set and catalog (usually VVDS) synchronous updates

� Debit and credit writes program

To have write integrity, when several tasks are accessing the same data set,
VSAM (and you) must guarantee that all the non-atomic writes are executed
without being pre-empted. This means that no other related intervening write I/O
operation should be executed.
 Chapter 4. Managing your VSAM data sets 215

Read integrity
Read integrity guarantees that the record you read is the most current copy
available. It implies:

� Within non atomic writes, the related read I/O operation is suspended.

� The read I/O operation is able to find the most current copy of the logical
record, meaning:

– If the data is in the buffer pool, VSAM must guarantee the most current
copy to satisfy the read (also called buffer pool coherency). In a shared
environment with different z/OS images accessing the data set, there are
two ways of doing this: through Parallel Sysplex RLS cross invalidation or
by VSAM refreshing the buffer at every read request (specified with
SHAREOPTION 4 which we discuss later).

– The write operation must send the current copy to where the next read can
access it, even in a multiple z/OS image system (to shared DASD or with
Parallel Sysplex RLS, to the coupling facility).

4.3.2 VSAM sharing mechanisms
Before talking about the sharing mechanisms, let us introduce the concept of the
VSAM control block structure.

The VSAM control block structure is formed by the input/output buffers and a set
of VSAM control blocks, created at open time, that holds informations related to
the data set being opened, like space available, type of VSAM data set, buffering
technique, and so on. The control block structure is deleted when the last close
of the data set is issued on this system.

A VSAM control block structure can be shared by more than one OPEN of the
same VSAM data set. To be shared, the structure must be compatible and
accessible.

To understand the meaning of compatible, let’s see what happens when a VSAM
data set is opened. To open a VSAM data set, an ACB is used and some
information about the ACB goes to the VSAM control block structure. For a new
ACB to use an existing VSAM control block structure, the new ACB must be
compatible with the existing control block structure. That means it must be
consistent in its specification of the following processing options:

� Data set specifications: For example, a VSAM control block structure created
when opening an index of a KSDS data set as an ESDS is not consistent with
a control block structure as when opening a KSDS data set such as a KSDS.

� The ACB MACRF options: DFR, UBF, ICI, CBIC, LSR, and GSR must be
consistent.
216 VSAM Demystified

For more information about ACB, refer to “ACB control block” on page 235.

Now, let us see how a VSAM control block structure can be accessible. To access
a VSAM control block structure depends on it is located:

� When using NSR or LSR, the VSAM control block structure is located in the
address space private area and can be accessed by tasks running programs
in the same address space.

� For GSR, the VSAM control block structure is located is Common Storage
Area (CSA) and can be accessed by task running programs in other address
spaces in the same system image.

For more information about NSR, LSR, GSR and RLS refer to Chapter 4,
“Managing your VSAM data sets” on page 203.

At open time, before creating a control block structure, VSAM verifies if already
an accessible and compatible VSAM control block structure of the data set exists:

� If so VSAM uses the same control block structure and the serialization to
guarantee data integrity in done at CI level.

� If one does not exist, VSAM creates the control block structure for the data
set. Also VSAM uses the SHAREOPTIONS value to determine the level of
data set sharing to implement protection through enqueue (ENQ) in
SYSVSAM.

� If it already exists in the Parallel Sysplex, it is not compatible or not
accessible, VSAM use the SHAREOPTIONS value to determine whether
creating a new control block structure would violate the SHAREOPTIONS
rules. If so, the OPEN fails, otherwise the OPEN is successful.

VSAM verifies if a control block structure exists in the Parallel Sysplex testing
enqueue in SYSVSAM to resources representing input and output control blocks
VSAM data set components.

VSAM uses two basic implementations to control data sharing:

� VSAM lock mechanism controls data sharing in a single control block
structure. VSAM has two lock mechanisms according to the mode being
used: RLS and non-RLS.

� Enqueue in SYSVSAM name, issued by VSAM, for resources representing
input and output VSAM control blocks for the data set components, based on
data set SHAREOPTIONS.

The VSAM control block structure plays a decisive role in VSAM data sharing.
When the sharing of a VSAM data set is done using a single and only VSAM
control block structure, VSAM guarantees read and write integrity at CI level,
independent of the SHAREOPTIONS or DISP specifications.
 Chapter 4. Managing your VSAM data sets 217

When the data set is accessed throughout different VSAM control block
structures at the same time, VSAM cannot ensure who has exclusive use of the
data because the control block structure is not the same. In this case VSAM
applies SHAREOPTIONS rules, serializing at data set component level.

When the SHAREOPTIONS being used do not protect the data set, the user
application programs must provide data set integrity by the use of ENQUEUE or
RESERVE macros.

There are five important ways to implement VSAM data set integrity according to
how the data set is shared:

� Internal locks for non-RLS access, when using a single VSAM control block
structure.

� Global lock for RLS access, a very sophisticated mechanism using the
coupling facility. RLS can be used when sharing a data set throughout the
Parallel Sysplex. SHAREOPTIONS does not apply to VSAM data sets in RLS
mode because it uses a single control block structure through the sysplex.
About sharing VSAM data sets in RLS mode refer to Chapter 5, “VSAM
Record Level Sharing” on page 243.

� SYSVSAM ENQ issued by VSAM, according to the data set
SHAREOPTIONS, for non-RLS access having multiple VSAM control block
structures.

� The ENQ serialization function issued by the data set allocation routine,
according to data set disposition informed. The Qname is SYSDSN and the
Rname is the data set name. The scope of the serialization is sysplex wide
and the resource Status is shared for SHR data set disposition and exclusive
for NEW, OLD or MOD disposition.

� The ENQ serialization function can also be implemented by the user
application program.

4.3.3 Sharing data in a single VSAM control block structure
When the sharing of a VSAM data set is done using a single and only VSAM
control block structure throughout the Parallel Sysplex, VSAM guarantees read
and write integrity independent of the SHAREOPTIONS or JCL DISP
specifications.

Table 4-1 presents the way you can implement VSAM data sharing with read and
write integrity in the Parallel Sysplex.
218 VSAM Demystified

Table 4-1 One VSAM Control Block Structure

With NSR or LSR, many jobs concurrently OPEN to same data set can use only
one VSAM control block structure, since issued by task(s) in the same address
space.

The ability to perform multiple OPENs to the same data set within a task or from
different tasks in a single address space sharing a single VSAM control block
structure is called inter-address space sharing, also referred as subtask sharing.
Subtask sharing allows many logical views of the data set while maintaining a
single VSAM control block structure. With a single control block structure, you
can ensure that you have exclusive control of the buffer when updating a CI. An
example of the use of single VSAM control block structure is in Figure 4-7 on
page 214, the data set “Tita”, in CICS-A, is accessed by ACB1 and ACB3, both
pointing to same data set.

When using GSR, the same VSAM control block structure can be used by
address spaces in the same system image, because the structure is in the CSA. In
Figure 4-7 on page 214, JOB 1 and JOB 2 are using GSR in the same system
image, accessing the same data set. They are using the same VSAM control
block structure for access the data set “Teka”, that is the only VSAM control block
structure in the Parallel Sysplex. Before using GSR, refer to “Global Shared
Resources (GSR)” on page 80, for its disadvantages. We strongly recommend
you to use RLS instead of GSR.

Let us see how VSAM guarantees read and write integrity, in multiple string
processing. In this processing environment there can be multiple independent
and concurrently requests (RPLs) for the same data set, using a single VSAM
control block structure:

� When your program issues a GET nonupdate request, VSAM first tries to
locate the control interval in buffers attached to its string and obtain a copy of
the CI (with NSR) or shares the same copy in the buffer (LSR). If VSAM does
not find in buffers, it reads the control interval from DASD.

� For GET update requests, the CI is obtained in exclusive control, through
VSAM lock mechanism, and then read the control interval from the device for
the latest copy of the data. If the buffer is already in exclusive control of
another string, the request fails with an exclusive control feedback code. The
rules for exclusive control are:

Buffering Technique One Control Block structure in the Parallel Sysplex

NSR/LSR All OPENs to data set issued in the same address space

GSR All OPENs to data set issued in the same system image

RLS Anywhere
 Chapter 4. Managing your VSAM data sets 219

a. If a given string obtains a record with a GET for update request, the control
interval is not available for update or insert processing by another string.

b. If a given string is in the process of a control area split caused by an
update with length change or an insert, that string obtains exclusive
control of the entire control area being split. Other strings cannot process
insert or update requests against this control area until the split is
complete.

An exclusive control conflict happens when a request is made for a resource that
is in exclusive control of an other request. VSAM treats in two different ways,
according buffering mode being used:

� With LSR or GSR, VSAM handles the request according to the information in
the MACRF parameter in ACB:

– LEW: The request is queued, placing the requiring task in wait until the
resource become available. This is the default.

– NLW: VSAM returns exclusive control error return code X’14’ to the
application program, then the application program is able to determine the
next action.

� With NSR, VSAM does not queue requests that have exclusive control
conflicts. VSAM returns a logical error return code, and you must stop activity
and clear the conflict. If the RPL that caused the conflict had exclusive control
of a control interval from a previous request, the application program issue an
ENDREQ before attempting to clear the conflict and avoid a dead lock. The
Conflict can be solved in one of three ways, at application program level:

a. Queue until the RPL holding exclusive control of the control interval
releases that control and then reissue the request.

b. For Assembler language, issue an ENDREQ against the RPL holding
exclusive control to force it to release control immediately.

c. When using LSR and Assembler source program, release the buffer
issuing MRKBFR MARK=RLS.

If the RPL includes MSGAREA and MSGLEN, the address of the RPL holding
exclusive control is provided in the first word of the MSGAREA. The RPL field,
RPLDDDD, contains the RBA of the requested control interval.

Sometimes this locking in a CI basis done by VSAM may cause contention and
even deadlocks. There are no deadlock detection and prevention algorithms
implemented in VSAM, except in an RLS environment. If you are facing these
drawbacks a recommendation is to have less logical records in a data control
interval, or in other words to have better lock granularity.
220 VSAM Demystified

Using a single VSAM control block structure
The three methods of achieving a single VSAM control block structure for a
VSAM data set while processing multiple concurrent requests are:

1. A single access method control block (ACB) and a STRNO>1. Refer to z/OS
DFSMS Using Data Sets, SC26-7410, to get more information about STRNO.

2. DD name sharing: When multiple ACBs, all and located in the same address
space, pointing to a single DD statement. You have this when multiple tasks,
in the same address space, are executing the same program concurrently or
as in the example below, in assembler language, multiple tasks executing
different programs, but pointing to same DD:

Example 4-1 DD name sharing pointing to a single DD statement

JCL:
//DD1 DD DSN=ABC

task A executing PGM1:
PGM1: OPEN ACB1

 ACB1 ACB DDNAME=DD1

task B executing PGM2:
PGM2: OPEN ACB2

 ACB2 ACB DDNAME=DD1

3. Data set name sharing, with multiple ACBs pointing to multiple DD statements
with different DDnames, but with the same DSname. The data set names are
related with an ACB open specification (MACRF=DSN). This MACRF option
means that subtask shared control block connection is based on common
data set names. For example:

Example 4-2 DD name sharing with different DD names

JCL:
//DD1 DD DSN=ABC
//DD2 DD DSN=ABC

task A executing PGM1:
PGM1: OPEN ACB1

 ACB1 ACB DDNAME=DD1,MACRF=DSN

task B executing PGM2:
PGM2: OPEN ACB2

 ACB2 ACB DDNAME=DD2,MACRF=DSN

Now, talking about data sets with AIX, VSAM connects an ACB to an existing
VSAM control block structure for data set name sharing only when the base of
 Chapter 4. Managing your VSAM data sets 221

the sphere is the same for both ACBs. In Example 4-3, supposing no VSAM
block structures exist:

� When task A issues OPEN to the cluster, VSAM creates block structure for
the cluster and for the alternate index. VSAM knows by the catalog the name
of the AIX.

� When task B issues OPEN to the PATH, VSAM adds to existing structure for
the cluster and the alternate index, because the base of the sphere is the
same, the cluster.

� When task C issues OPEN to the alternate index, VSAM creates new control
block structure for the alternate index. VSAM does not add to existing
structure as the base of the sphere is not the same. SHAREOPTIONS are
enforced for AIX_A data set name since multiple control block structures exist.

Example 4-3 Two VSAM control blocks structure to same data set

JCL:
//DD1 DD DSN=CLUSTER_A
//DD2 DD DSN=PATH CONNECTING AIX_A TO CLUSTER_A
//DD3 DD DSN=AIX_A

task A executing PGM1:
PGM1: OPEN ACB1

 ACB1 ACB DDNAME=DD1,MACRF=DSN

task B executing PGM2:
PGM2: OPEN ACB2

 ACB2 ACB DDNAME=DD2,MACRF=DSN

task C executing PGM3:
PGM3: OPEN ACB3

 ACB3 ACB DDNAME=DD3,MACRF=DSN

To a new ACB use an existing VSAM control block structure, the new ACB must
be compatible with the existing control block structure, if compatibility cannot be
established, OPEN tries (within the limitations of the share options specified
when the data set was defined) to build a new control block structure. If it cannot,
OPEN fails.

When implementing intra-address space sharing, it is necessary that when
attaching new subtasks, the subpool zero must be shared by mother and
daughter tasks in order to shared the RP control blocks (SZERO=YES in the
ATTACH macro).

A subtask has an opened ACB which shares a control block structure that can
have been previously used. If this subtask now issues the POINT macro to obtain
222 VSAM Demystified

the position for the data set, it should not be assumed that positioning is at the
beginning of the data set, as in a more normal situation.

When VSAM can not use an existing control block structure for a data set, VSAM
uses the SHAREOPTIONS. Refer to “VSAM SHAREOPTIONS” on page 223.

4.3.4 Sharing data with many VSAM control block structures
In this section we discuss about sharing data sets throughout the Parallel
Sysplex when more than one VSAM control block structure can exist. This
happens when an OPEN to a data set cannot use an existing VSAM control block
structure.

VSAM SHAREOPTIONS
VSAM SHAREOPTIONS play an important role in VSAM integrity. They specify
whether and to what extent data is to be shared among tasks in one or multiple
z/OS task programs the Parallel Sysplex. When you define VSAM data sets, you
specify how the data is to be shared through the use of SHAREOPTIONS
parameter of DEFINE command.

The share options are specified as SHAREOPTIONS(x,y). Improperly stated, x and
y are referred as cross-region and cross-system, respectively. However, share
options are sysplex wide. We keep using the names cross-region, cross-system
to avoid confusion, but keep in mind that they do not mean that.

The sharing is controlled throughout VSAM control block structures. VSAM uses
the SHAREOPTIONS values to determine whether creating a new control block
structure would violate the SHAREOPTIONS rules. If so, the OPEN fails,
otherwise the OPEN is successful.

VSAM uses enqueue to implement the level of sharing requested in
SHAREOPTIONS, when creating a new control block structure at OPEN time.
VSAM issues enqueues to the major name SYSVSAM.

When a cluster has an alternate index:

� If the data set opened is the path or the cluster, VSAM creates control block
structure for:

– The cluster components. For example, if the data set is KSDS, VSAM
creates control block structure for the data and for the index component.

– The alternate index components.

� If the data set opened is the alternate index, VSAM issues enqueue only to
the alternate index components (for example, data and index).
 Chapter 4. Managing your VSAM data sets 223

For each VSAM control block structure created, VSAM issue enqueue to
enforce SHAREOPTIONS.

When the VSAM data set is empty and is being open for OUTPUT, no matter the
SHAREOPTIONS, only one VSAM OUTPUT control block structure can exist
throughout the Parallel Sysplex, VSAM process the data set as having
SHAREOPTIONS(1,x).

When a data set is allocated with OLD disposition, VSAM treats the data set as
having SHAREOPTIONS(1,x).

Cross-region options
The meanings of the options listed below are valid also in the Parallel Sysplex.

(1): This SHAREOPTIONS means that can be only one VSAM OUTPUT
control block structure throughout the Parallel Sysplex or any VSAM INPUT
control block structures in the Parallel Sysplex.

Except for those OPENs using the same VSAM control block structure,
VSAM ensures only one OPEN for output or many OPENs for input only.
Any other OPEN fails with a return code in ACB. That means, if the data set
is open for input, other OPEN creating a new control block structure can
open the same data set for input successfully. If the intention to open the
data set is for output, the open fails with a return code in ACB. In other
words, VSAM is insuring total read and write integrity. The intention of
input or output is declared in the ACB MACRF parameter, not in the OPEN
input or output options.

For output, VSAM issues exclusive enqueue for the input and output VSAM
control blocks structure for each VSAM component, guaranteeing just one
control block structure in the Parallel Sysplex. If an other OPEN is issued
against the same data set, not using the same control block structure,
VSAM does not queue the open, but fails it.

For input, VSAM issues shared enqueue only for input VSAM control
blocks structure for each VSAM component. OPENs for input are allowed. If
an OPEN for output is issued against the same data set, not using the
same control block structure, VSAM does not queue the open, but fails it.

(2): VSAM ensures that only one VSAM control block structure for output in the
Parallel Sysplex and many VSAM control block structures for input. In other
words, VSAM is insuring write integrity. If you require read integrity (with a
better performance due to higher granularity than cross-regions (1), it is
your responsibility to use the ENQ and DEQ macros appropriately to
provide read integrity for the data the program obtains.

VSAM fails the OPEN OUTPUT when already exist in the Parallel Sysplex
an output VSAM control block structure to the same data set.
224 VSAM Demystified

(3): VSAM allows many OPENs to the data set for output and/or input. The
user application programs must ensure both read and write integrity
through their own ENQs (including Open and Close processing on them).

(4): VSAM allows many OPENs to the data set for output and/or input. The
user application programs must ensure both read and write integrity
through their own ENQs (including Open and Close processing on them).
VSAM refreshes the data and index components buffer pools for direct
processing (the sequence set is not refreshed), to guarantee the coherency
of the data in the buffer pool. Coherency in this case means that the task
gets the most updated contents of the requested record.

Cross-system options
As we said before, the name cross-system is improper stated, since
SHAREOPTIONS is sysplex wide. Cross-system options provide the same
capability as cross-region 3 and 4. So, they are just a way to provide data sets
using cross-region options 1 and 2 with the capabilities of 3 or 4. That means,
you can use cross-systems options to have SHAREOPTIONS 1 or 2 with (4) or
without (4) buffers refreshment. The cross-system value can be:

(3): VSAM does not refresh the buffer pools for direct processing. When
SHAREOPTIONS(3,3) or SHAREOPTIONS(4,3) is used, VSAM provides a
Control Block Update Facility (CBUF).

CBUF is active, whenever a data set is opened with DISP=SHR, and
SHAREOPTIONS(3,3) or SHAREOPTIONS(4,3). In this case, VSAM record
management maintains a copy of the critical control block data in z/OS
common storage. Obviously, this common storage is available only to
address spaces within your operating system. Passing this information to
another operating system is your responsibility. CBUF eliminates the
restriction that prohibits control area splits. However, under share options 4
these restrictions still exist.

Cross-systems sharing with CA splits can be accomplished (with integrity)
by sending the VSAM shared information (VSI) blocks to the other host at
the conclusion of each output request. Every time a data set is opened on a
system for CBUF processing, a VSI is built for the data set and added to the
VSI chain. This control block is then updated by the user to communicate
information from one address space to another. Generally, the VSIs sent to
other z/OS images has not changed and only a check occurs. Refer to the
Appendix , “Accessing the VSAM Shared Information (VSI)” on page 366,
where there is an example about how to get the VSI.

About sending the VSI to the other z/OS image, you may choose:

• XRC APIs, as: IXCCONN, IXCMSGO, IXCMSGI
• APPC VTAM® LU 6.2, as: RECEIVE_AND_WAIT and SEND_DATA
 Chapter 4. Managing your VSAM data sets 225

Remember that you still must continue to provide read and write integrity.
Although VSAM ensures that tasks have correct control block information if
serialization is done correctly. Also, the option 3, does not cause buffer pool
invalidation as in option 4.

Because programs in many regions can share the same data set, an error
that occurs in one region can affect programs in other regions that share
the same data set. If a logical error (register 15=8) or physical error
(register 15=12) is detected, any control block changes made before the
error was detected will be propagated to the shared information in common
storage.

The section “Techniques of Data Sharing” in z/OS DFSMS Using Data Sets,
SC26-7410, contains examples about how to implement VSAM sharing with
integrity.

4.3.5 General share options: Considerations
User tasks running user programs that ignore the write integrity guidelines in
share options 3 and 4 can cause VSAM program checks, lost or inaccessible
records, uncorrectable data set failures, and other unpredictable results. This
option places responsibility on each user application program sharing the data
set. Refer to 3.3.4, “Broken VSAM data set” on page 163.

User programs that ignore the read integrity guidelines in share options 2, 3 and
4 results in down-level data records and erroneous no-record-found conditions.

As stated before in cross-region option 4 and cross-system option 4, buffers for
direct processing are refreshed by VSAM for each request (or in other words,
buffering is not saving I/O operations). Here are more details on this:

� Each PUT request results in the appropriate buffer being written immediately
into the VSAM object's DASD. VSAM writes out the buffer in the user's
address space that contains the new or updated data record. The data and
sequence-set control interval buffers are marked invalid following the I/O
operation to DASD.

� Each GET request results in all the user's input buffers being refreshed. The
contents of each data and index buffer used by the user's program is retrieved
from the VSAM object's direct access device.

� GRS serialization

Open/Close/EOV routines use ENQ/DEQ in SYSVSAM.dsn.catname.I|O|B, to
implement serialization when processing a VSAM data set, as well as to
ensure proper sharing based on share options. To avoid integrity exposures,
never add SYSVSAM Qname to the GRS RNL exclusion list.
226 VSAM Demystified

� Pay attention that during load mode processing, you cannot share data sets.
Share options are overridden during load mode processing to (1 3). Refer to
2.6.11, “Initial load option” on page 59.

Data and sequence sets buffers for direct processing (for reads and writes) are
refreshed for each request (index buffers are not). Output processing is
limited to update and add processing that does not change either the
high-used RBA or the RBA of the high key data control interval. Then, control
area splits and the addition of a new high-key record for a new control interval
that results from a control interval split are not allowed. VSAM returns a
logical error to the user's program when this condition occurs. If the task
running your program does not satisfy the requirements described above, you
require cross-system option 3, where due to CBUF, CA splits and addition of a
new high-key record are allowed.

Table 4-2 contains a summary of the share options.

Table 4-2 Relationship between share options and VSAM functions

4.3.6 Protecting VSAM data set through DISP parameter
When a data set is allocated, the data set disposition provokes an enqueue in the
major name SYSDSN, minor name data set name. The scope of the enqueue is
throughout the Parallel Sysplex (unless the data set name is the GRS exclusion
list). The enqueue is SHARED for shared data set disposition and EXCLUSIVE
for OLD, MOD or NEW data set disposition.

If you intend to protect your VSAM data sets using its disposition, be aware of:

� The enqueue is done only for the data set name, not for the sphere
components.

� When OLD data set disposition is used, VSAM treats the data set as having
SHAREOPTIONS(1,x).

In Example 4-4, the enqueues in SYSDSN issued due to allocation are in two
different resource names: PATH_OF_CLUSTER_A, and CLUSTER_A. The OLD

Share Options (DISP=SHR) VSAM function provided

(3 3) CBUF and no buffer refresh

(3 4) Data/Seq Set buffers invalidate. No CA
splits

(4 3) Data/Index buffers invalidate. CBUF

(4 4) Data/Seq Set/lndex buffers invalidate. No
CA splits
 Chapter 4. Managing your VSAM data sets 227

disposition does not avoid allocating CLUSTER_A in JOB 02. But with the OLD
disposition in JOB 01, VSAM treats as SHAREOPTIONS(1,x). Then, while JOB
01 is running with DD1 opened, if JOB 02 starts and tries to open the data set, it
receives and OPEN error, because already exists one RP control block for
OUTPUT.

Example 4-4 VSAM data set allocated with DISP=OLD

SPHERE: CLUSTER_A (Base of the sphere)
AIX_OF_CLUSTER_A
PATH_CLUSTERA (Connecting the alternate index to the base cluster)

JOB 01 OPEN FOR OUTPUT:
//DD1 DD DSN=PATH_OF_CLUSTER_A,DISP=OLD

JOB 02:
//DD2 DD DSN=CLUSTER_A,DISP=SHR

Before using DISP=OLD to protect VSAM data sets, refer to “Using a single
VSAM control block structure” on page 221, to understand how VSAM creates
control block structure according to the component being opened. If you intend to
use DISP=OLD, do not forget to allocate the VSAM data set components with
DISP=OLD too.

4.4 Extended addressability (EA)
Extended addressability (EA) was introduced in DFSMS/MVS 1.3, for KSDS data
sets. Since DFSMS/MVS 1.4, EA is supported in record level sharing (RLS). With
DFSMS/MVS 1.5, support for extended addressability is extended to all other
VSAM record organizations.

With EA, the 4G architectural limit for data set size imposed by using the 4-byte
field for the relative byte address (RBA) was eliminated.

It is important to state that extended addressability and extended format are not
the same concept. Extended format is a way of storing data in a 3390/3380
logical volume. Extended addressability is the ability of allowing larger VSAM
data sets. However, extended format is a pre-prerequisite for extended
addressability.

Using EA, the size limit for a VSAM data set is determined by either:

� CI size multiplied by 4 GB
� The volume size multiplied by 59
228 VSAM Demystified

A 4K CI size yields a maximum data set size of 16 TB, while a 32 KB CI size
yields a maximum data set size of 128 TB. A 4K CI size is preferred by many
applications for performance reasons. No increase in processing time is
expected for extended format data sets that grow beyond 4 GB.

To use EA, the data set must be:
� SMS-managed
� Defined as extended format

EA is available to a data sets associated to a data class defined with:

� DSNTYPE=EXT
� EXTENDED ADDRESSABILITY=Y

Figure 4-8 shows the ISMF panel where you specify EF and EA when you define
or alter a data class.

Figure 4-8 DATA CLASS DEFINE ISMF panel

After creating a data class with the attributes above, users can code the
DATACLAS value on their DD statements or let the ACS routines assign the
appropriate data class for their eligible data. Another method in which JCL can
be used to create a KSDS with extended addressability is through the DD
statement keyword LIKE.

Applications that access a VSAM extended format KSDS through a
user-specified key can take advantage of having very large VSAM components
without making JCL or code changes.

 DATA CLASS DEFINE Page 2 of 4
 Command ===>

 SCDS Name . . . : SYS1.SMS.SCDS
 Data Class Name : MHLEXTN

 To DEFINE Data Class, Specify:

 Data Set Name Type EXT (EXT, HFS, LIB, PDS or blank)
 If Ext R (P=Preferred, R=Required or blank)
 Extended Addressability . . . Y (Y or N)
 Record Access Bias (S=System, U=User or blank)
 Space Constraint Relief (Y or N)
 Reduce Space Up To (%) . . . (0 to 99 or blank)
 Dynamic Volume Count (1 to 59 or blank)
 Compaction (Y, N, T, G or blank)
 Spanned / Nonspanned (S=Spanned, N=Nonspanned or blank)
 Chapter 4. Managing your VSAM data sets 229

To support EA, many DFSMS macros and commands have changed. To take
advantage of extended addressability, new macro parameters and
sub-parameters related to RBA have been added.

� RPL macro, added the XRBA subparameter to the OPTCD parameter to
indicate that extended addressability is be used. It must be used when
processing a data set by its RBA. For example, OPTCD=(ADR,DIR,XRBA)
instead of OPTCD=(ADR,DIR,RBA).

� TESTCB macro, added XADDR as a possible value to ATRB. It can be used
to test if the data set is in extended addressability format.

� SHOWCB macro, added:

– XAVSPAC parameter to obtain the amount of available space in the data
component or index component, in bytes.

– XENDRBA, to obtain the high-used RBA (HURBA)

– XHALCRBA, to obtain the high-allocated RBA (HARBA)

The fields above use 8 bytes to return the information, instead of 4 bytes used
for non-EA data sets.

Applications that process an EF data set by RBA must provide an 8-byte RBA
when the data set is defined for EA. Special provisions are allowed for certain
types of requests (for example GET SEQ,ADR or GET ADR,DIR,LRD).

A major idea in the EA design is to make applications, such as backup,
transparent to the function. That is, we do not require an extended field (8-bytes)
XRBA, unless it is a positioning request. In the case of a backup when the data
set is to be just read sequentially from the beginning, requiring no positioning, the
extended field is not required. Also, RLS processing does not support any use of
RBA or XRBA access to an EA data set.

With DB2 V1.6 and later, EA can be used for very large DB2 table spaces.

A VSAM EF KSDS defined for EA must not be shared with any system running a
release prior to DFSMS/MVS 1.3. Toleration maintenance is available for
DFSMS/MVS 1.2 systems which support VSAM extended format data sets
without EA. A DFSMSdfp toleration PTF allows systems at this level to issue an
error message if any attempt is made to open a VSAM KSDS with extended
addressability. DFSMSdss provides a toleration PTF so that an error message is
issued when a logical DUMP, RESTORE, or COPY operation is attempted on a
KSDS with extended addressability.

DB2 data warehousing projects that require table spaces larger than 4 GB can
use the EA support for linear data sets provided in DFSMS/MVS 1.5. To do this,
assign a data class with the extended addressability attribute to the data set
230 VSAM Demystified

when it is defined. The data class should have the following attributes specified
for it:

Recorg = LS
Data Set Name Type = Extended
IF Extended = Required
Extended Addressability = Yes

Then make sure your data class ACS routine for DB2 permits the use of the data
class created.

The message IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS 116 is
produced when you try to go beyond 4 GB in a VSAM data set without EA.

4.5 Catalog Search Interface
The Catalog Search Interface (CSI) is shipped as a component of base since
DFSMS/MVS 1.5. As its use is not wide spread, we take this opportunity to
remind you of its availability and to point out its advantages over other methods
of obtaining catalog information. The following section describes:

� CSI setup
– CSI programming considerations
– IBM supplied sample program

4.5.1 CSI setup
The CSI is a general-use programming interface for obtaining information from
ICF catalogs. It provides great flexibility in specifying the selection criteria for the
data that is to be returned. The CSI may be invoked by assembler programs,
high-level language programs and REXX execs. See the appendix in Managing
Catalogs, SC26-4914, for a complete description of the interface. We present an
sample REXX using CSI in “SMFLSR sample program” on page 380.

Much of the information you can obtain from the CSI you could also obtain using
an IDCAMS LISTCAT command. However, there are some advantages using
CSI that you may want to consider when accessing catalog information:

� Using a Generic Filter Key:

When requesting information from the CSI for specific catalog entries, you
may specify a generic filter key. This key can contain the following symbols
used to filter the entry names:

* A single asterisk represents one or more characters within a qualifier
** A double asterisk represents zero or more qualifiers
% A percent sign represents one alphanumeric or national character
 Chapter 4. Managing your VSAM data sets 231

%%... Up to eight characters can be specified in one qualifier

� Using selection criteria fields

When requesting information from the CSI for specific catalog fields, you may
specify a list of field names. For example, if you were only interested in the
volume and the file sequence number for specific data sets, you could specify
the catalog field names VOLSER and FILESEQ in the field name list when
calling the CSI. Obtaining this information from IDCAMS would require you to
use the IDCAMS LISTCAT ALL command and to scan the output to retrieve
the desired information.

� Performance benefits

Using the CSI generally results in significantly better performance compared
to using IDCAMS LISTCAT, which does a catalog call for each entry
processed. The flexibility in requesting only the information that you are
interested in using the CSI results in additional performance improvements,
since you eliminate the retrieval of unneeded information.

� CSI programming considerations

The CSI is distributed as load module IGGCSI00 in SYS1.LINKLIB. It is
reentrant and reusable, can be invoked in 24-bit or 31-bit addressing mode, in
any PSW key, and in either problem or supervisor state.

CSI requires three parameters to process your request:

– A 4-byte reason area used to return error or status information
– A variable length selection criteria list (for input)
– Work area used to return the requested catalog data

� IBM supplied sample programs

IBM provides three sample assembler programs and one REXX exec in
SYS1.SAMPLIB. Here we provide a short summary of their functions:

� IGGCSILK produces output similar to that of an IDCAMS LISTCAT
CAT(catname) command.

� IGGCSIVG identifies unused space at the end of VSAM data sets defined in a
given catalog. This is calculated as the difference of the high-allocated and
the high-used relative byte address (HARBA-HURBA)

� IGGCSIVS produces a list of data set names defined in a given catalog that
reside on a specific volume. Such a list might be helpful in a volume recovery
situation.

� IGGCSIRX is a REXX exec that produces a list of data set names matching a
generic filter key. When you call it from a TSO/E session, it will prompt you for
the filter key, and return matching data set names, their type, and volume
definition.
232 VSAM Demystified

4.6 Major sources of VSAM processing options
The VSAM cluster processing options and characteristics come from different
sources, for example, JCL, SMS data classes, or macro parameters. The source
of the processing options can be confusing since the same parameter can be
specified in more than one source. In this case, there is an order of precedence
that, when not understood, may give logically unexpected results. Table 4-3 lists
the processing options and the characteristics and their sources, indicating the
precedency by the highest number. The underlined value in MACRF indicates
the default. The Type explains if the parameter is related to a data set
characteristic (C) or processing option (P).

Table 4-3 VSAM Data Set Parameters and Processing Options

Parameter Type ACB DD Defi
ne

SMB
DC

ACCBIAS P - 2 - 1a

AVGREC (RECORDS) C - 2 2 1

BUFSP P 2b 3b 1c -

BUFND,BUFNI P 2 3 1 -

BWO P - - 2 1

CATALOG C - - 1 -

COMPACTION C - - - 1

CISZ C 2 1

DATACLAS (DATACLASS) d C - 1 1 -

DDNAME P 1 - - -

DYNAMIC VOLUME COUNT P - - - 1

ERASE/NOERASE P - - 1 -

EXCEPTIONEXIT P - - 1 -

EXLST P 1 2e - -

EXPDT C - 2 2f 1,3g

EXTENDED ADDRESSABILITY C - - - 1

EXTENDED FORMAT C - - - 1

FREESPACE C - - 2 1
 Chapter 4. Managing your VSAM data sets 233

FRLOG P - 3 2 1

LIKE C - 1 1h -

KEYLEN C - 2 2 1

KEYOFF C - 2 2 1

LOG P - - 2 1

LOGSTREAMID P - 2 2i 1

LRECL (RECORDSIZE) j C - 2 2 1

MGMTCLAS (MANAGEMENTCLASS) d k P - 1 1 -

MACRF=[NSR | LSR | GSR | RLS] P 1 l - -

MACRF=[ADR,CNV,KEY] P 1 - - -

MACRF=[CFX l NFX] P 1 - - -

MACRF=[DIR][,SEQ][,SKP] P 1 - - -

MACRF=[DFR l NDF] P 1 - - -

MACRF=[DDN l DSN] P 1 - - -

MACRF=[IN,OUT] P 1 - - -

MACRF=[ICI l NCI] P 1 - - -

MACRF=[LEW l NLW] P 1 - - -

MACRF=[NIS l SIS] P 1 - - -

MACRF=[NRM l AIX] P 1 - - -

MACRF=[NRS l RST] P 1 - - -

MACRF=[NUB l UBF] P 1 - - -

OWNER C - - 1 -

RECATALOG/NORECATALOG C - - 1 -

RECORG C - 1 1 -

RETPD C - 2 2m 1,3n

REUSE/NOREUSE P - - 2 1

Parameter Type ACB DD Defi
ne

SMB
DC
234 VSAM Demystified

4.6.1 ACB control block
The ACB is a control block within the application program. The ACB is to VSAM
as the DCB is to other access methods. In its fields, the ACB contains logical
information about the VSAM cluster. The ACB information is used by Open,
Close and VSAM routines. The way that the ACB is created depends on the
source language of the application program:

RLS CF Cache Value P - - - 1

RLSREAD={NR |CR NORD}] P 1 l - -

RMODE31 P 1 2 - -

SHAREOPTIONS C - - 2 1

SPACE (CYL, KB, MB, REC, TRK) P - 2 2 1

SPACE CONSTRAINT RELIEF P - - - 1

SPANNED/NONSPANNED C - - 2 1

SPEED/RECOVERY P - - 2 1

STORCLAS (STORAGECLASS) d P - 1 1 -

STRNO P 1 2 - -

VOLUME P - 2o 2 1

WRITECHECK P - - 1 -

a. Correspond to Record Access Bias in Data Class
b. Specifies the maximum space for buffers
c. Specifies the minimum space for buffers
d. Can be overridden by the ACS routines
e. Through the AMP, SYNAD parameter
f. TO(x) FOR(x) of DEFINE command
g. When specified in MANAGEMENT CLASS, can not be overridden
h. Correspond to MODEL in DEFINE command
i. LGSTREAM JCL parameter
j. LRECL does not apply to LINEAR data sets
k. Overrides Data Class parameters EXPDT RETPD
l. RLS=(NRI or CR) when in ACB RLSREAD=NORD or does not specifies RLS.
m. TO(x) FOR(x) of DEFINE command
n. When specified in MANAGEMENT CLASS, can not be overriden
o. Only when Storage Class with Guaranteed Space= yes

Parameter Type ACB DD Defi
ne

SMB
DC
 Chapter 4. Managing your VSAM data sets 235

� In Assembler through the ACB macro at assemble time or GENCB at
execution time.

� In Cobol through the File Description.

� In through DCL statement.

The source of ACB fields can be:

– From keywords in macro ACB at compile or assembler time.

– At allocation, with ACB parameters coming from AMP parameter, in the
DD statement.

– From keywords in macro GENCB at execution time by the application
program.

Here is a list of the ACB fields. The ones starting with an asterisk indicate that
they can also be entered in the JCL DD statement:

– DDName, which is the link with the DD statement. The DD statement
besides its optional complementary ACB information, describes the
physical characteristics of the cluster, as VOLSER, device type.

– The size (or the maximum size) of the I/O buffer virtual storage space
and/or the number of I/O buffers to process data and index records.

– The chosen buffering technique, such as: NSR, LSR, GSR, RLS.

– The defer write option, that is to delay the buffer destage.

– The processing options that you plan to use:

• Keyed, RBA, RRN

• Sequential, direct, or skip sequential access, or a combination. This
field is just an intention

• Retrieval, storage, or update (including deletion), or a combination

• Shared or nonshared resources

– The address of an exit list for your exit routines. Use the EXLST macro to
construct the list.

– What to do when lock contention arises.

– Read integrity options for RLS GETs.

– If you are processing concurrent requests, the number of requests
(STRNO).

– The address and length of an area for error messages from VSAM.

– RMODE of the buffers and VSAM control blocks.
236 VSAM Demystified

– Address of the VSAM GET/PUT routine. This field is filled by the OPEN
macro function.

4.6.2 DD statement keywords
Please refer to the MVS JCL Reference, SA22-7597-04, to get information about
all the generic DD Statement keywords which apply to VSAM. Here are VSAM
specific parameters not present in the ACB:

– Options for controlling System Managed Buffering (SMB) named
ACCBIAS in the AMP keyword

– Logstream option for RLS and Transactional VSAM

4.6.3 Catalog BCS and VVDS entries
The catalog entry for a VSAM cluster or a component has the attributes usually
needed to create this VSAM entity. Those attributes are entered in the catalog
through the IDCAMS DEFINE/ALLOCATE/ALTER commands:

� Primary and secondary space information
� CI size
� Free space percentages
� Logical record size
� Cluster organization data set (KSDS, RRDS,ESDS, LDS, VRRDS)
� Key length and key offset
� Name of SMS constructs, as DC, SC, M C
� Retention period
� Share options: cross region and cross system
� Spanned records
� Backup while open (BWO) options
� The minimum buffer space size
� Expiration date
� Initial load options (SPEED and RECOVERY)

4.6.4 SMS constructs
Here are the SMS constructs that effect VSAM attributes.

Data Class construct
The data class construct has almost the same options of the IDCAMS define
command. The practical difference is that, with a data class, you do not need to
define all the IDCAMS keywords. You just point to the data class name. Also,
these options are centralized and controlled through the SMS storage
 Chapter 4. Managing your VSAM data sets 237

administrator. The Following options in data class are not present in the IDCAMS
DEFINE, and are not stored in the catalog:

– To use or not the primary size in a secondary volume

– Maximum number of volumes

– Extended format

– Extended addressability

– Options for controlling System Managed Buffering (SMB) named
RECORD_ACCESS_BIAS

– Space constraint relief

– Data Compression

– RLS use of the CF cache structure

Storage Class
The storage class SMS construct has parameters to control:

� Performance as:

– How the I/O operation uses the controller cache
– Are the CIs stripped?
– CF structure name to be used as a cache by VSAM RLS

� Availability as:

– Guarantee to the VSAM cluster a controller with RAID
– Guarantee to the VSAM cluster a controller with T0 copy and remote copy

Management Class
The management class SMS construct has parameters to control VSAM clusters
expiration, partial release, GDG, backups and migration.

4.7 Media Manager, Open, Close, EOV in VSAM
Media Manager is the I/O driver code. It stands between the access method and
the Input Output Supervisor. VSAM has two I/O drivers depending on the
required function:

� Block Processor (SVC 121), that is old and there is a SOD for being
inactivated. Since z/OS V1R4 DFSMS Block Processor is being used only for
Improved Control Interval processing (ICI).

� Media Manager, which is modern. There is a trend to all access methods to
use Media Manager. Media Manager has the I/O channel program support for
implementing Extended Format.
238 VSAM Demystified

Media Manager executes all these functions:

� Creates Channel Programs with virtual addresses (this was done before by
VSAM)

� Page-Fix (or Page-Free) buffers

� Verifies that buffers are accessible in user key

� Translates virtual addresses to/from real addresses in the channel program

� Validates that RBA is within data set

� Re-drives Channel Programs to IOS (through STARTIO macro)

� Provides for DCME statistics

� Invokes SMFIOCNT

4.7.1 OPEN macro
Before an application program can access a data set, it must first issue the
OPEN macro to open the data set for processing. The OPEN is issued against a
user Access method Control Block (ACB). Opening a data set causes VSAM to:

� Verify that the data set matches the description specified in the ACB or
GENCB macro. For example, MACRF=KEY implies that the data set is KSDS.

� Construct the internal control blocks and buffer pools that VSAM needs to
process your requests for access to the data.

� Load the access method (based in the ACB information) placing the address
in the ACB for the next GET or PUT.

� Check your program security authorization (RACF).

4.7.2 CLOSE macro
The CLOSE macro disconnects your program from the data set. VSAM does the
following during CLOSE:

� Writes any unwritten data or index records whose contents have changed.

� Writes SMF records if using SMF.

� Updates the catalog entry for the data set. Updates the data set’s high-used
RBA (HURBA).

� Restores control blocks to the status they had before the data set was
opened.

� Releases virtual storage obtained during OPEN processing for additional
VSAM control blocks and VSAM routines.
 Chapter 4. Managing your VSAM data sets 239

� For extended format KSDS, releases all space between HURBA and HARBA
if partial release was specified at OPEN.

If an abend happens during CLOSE, the HURBA which is updated during
CLOSE processing, may be incorrect because the catalog was not updated.

The next VSAM OPEN performs an implicit VERIFY. If the VERIFY is not
successful, VSAM OPEN passes a return code and reason code.

You can issue a CLOSE TYPE=T or a temporary CLOSE. This causes VSAM to
complete any outstanding I/O operation, update the catalog, and write any
required SMF records. Then processing can continue without issuing an OPEN
macro.

4.7.3 End-of-Volume (EOV)
EOV function is invoked by VSAM Record Management, when a VSAM data set
requires additional space. The lack of this additional space is perceived by:

� High-used RBA (HURBA) = High-allocated RBA (HARBA)
� RBA of next CI/CA greater than HARBA during create
� No extent in the current volume contains a specific searched RBA

Then, EOV acquires new extents interfacing with DADSM, updates the VSAM
control block structure for the data set with the new extent information, and
updates the critical control block data in common storage and in the catalog, so
that this new space is accessible by all regions using this VSAM data set.

4.8 VSAM and 64 bits
Since z/OS V1R4 DFSMS, VSAM supports 64 bits of real storage. Some VSAM
functions was modified to can use real storage address:

� Media Manager:

– Now performs I/O to all VSAM data sets, except when using ICI
processing.

– Full support for ESS-2105 (SHARK), allowing Read Track Data, Write
Track Data and Write Full Tack.

– Support for 64-bit real addresses used to back 31 bit virtual addresses.

� OPEN routine:

– Obtains buffers in 64-bit real storage in all cases.
240 VSAM Demystified

– Eliminates all control blocks and data from CSA and SQA, except when
GSR and ICI is being used. The data and control blocks now use private
storage area.

– Initializes a protected field for the high allocated CI, for being later updated
by the EOV routine when extending the data set.

� Record Management:

– Uses the information of the high allocated CI, stored in a protected page,
to search the index. It avoids loops when a pointer is corrupted.

� VSAM Hiperbatch:

– Now supports VSAM extended format data set

� Checkpoint/Restart:

– Now supports VSAM extended format data set

� EOV routine:

– EOV does not support ORDERED parameter. If space is not available on
the next candidate volume, a different candidate volume is used.

4.9 Special considerations for COBOL users and SMB
This was added to provide some insight for COBOL users.

4.9.1 COBOL users take note
Note: This information was provided by Helen Witter.

Try to keep in mind is that COBOL is written for NSR processing. If anything is
done to switch the processing to LSR (whether OEM, SMB or BLSR), the
program or COBOL may not be able to handle it. The good news is that SMB can
be disabled for a particular program by coding an override on the DD card and
letting other files that access the dataset continue to use SMB. The most
common problem is a positioning error. With NSR processing, implicit positioning
by VSAM to the first record in the file is done on the first sequential GET. Many
programs (especially older ones) take advantage of this and do not explicitly
position to the first record of the file. With LSR, there is no implicit positioning
done so if the program does not position, the same GET that worked with NSR
will be returned with a rc58. This translates into a COBOL SK30. This should be
minimal since SMB won't decide to do DO processing on a file that is opened
with sequential. The other very common problem is waits/hangs. This is also due
to the inherent differences between NSR and LSR. With NSR you may have
multiple requests in the pool accessing the same data CI, because a copy of the
CI will be given to each request. In LSR, you can have multiple requests reading
 Chapter 4. Managing your VSAM data sets 241

the same CI (they will all share the same buffer rather than get their own copy),
but a request for update of that CI must wait until all the readers have finished
with it. This can cause hangs. There are a number of possible circumvention for
this. It depends on what the program is doing and in what order. If, for example, if
the program has two ACB's, it could open the sequential ACB first then DO would
not be selected. Another possible problem could be very old programs that were
written for ISAM datasets. If the customer has been using the VSAM/ISAM
interface to continue to use these programs, they must continue to use NSR.
Again, the impact should be minimal as the ACB probably has sequential
specified. Some SMB users, not just COBOL, are finding that they need to
increase their region size when running SMB because of the extra storage
required to optimize the buffering. This is especially true on large files or
programs that open many SMB VSAM files. In general, SMB is pretty "smart" and
the user should see a good deal of performance benefits from using SMB,
however, it still comes down to some applications might need minor JCL or
coding changes to use SMB.
242 VSAM Demystified

Chapter 5. VSAM Record Level Sharing

This chapter introduces VSAM Record Level Sharing (RLS) concepts and
describes how to implement RLS.

The topics cover:

� Introducing RLS

� RLS terminology

� Planning for RLS

� Implementing RLS

� MVS commands for RLS

� RLS problem determination and recovery

� RLS enhancements

� RLS performance considerations

5

© Copyright IBM Corp. 2001, 2003. All rights reserved. 243

5.1 Introducing VSAM RLS
In this section we introduce the basic concepts of VSAM RLS mode.

5.1.1 What is VSAM RLS?
VSAM RLS is another mode of managing buffer pools, which allows any number
of users within your Parallel Sysplex to share your existing VSAM spheres. It
provides full data integrity (read and write). The serialization is at record level.
However to implement recoverable spheres the user must have its own backout
log, as CICS has.

VSAM RLS does not introduce new types of VSAM clusters; rather, it introduces
a new way of accessing existing data sets. Apart from the need to open data sets
in RLS mode, the same VSAM record management interfaces (get, put, point,
erase) are used.

You can specify the RLS mode in the MACRF parameter of the ACB macro that
you use to open the data set in your program. You can also specify the RLS
mode, in the new keyword ‘RLS’ in your DD card that points to your VSAM data
set in your JCL.

RLS mode maybe used with KSDS, RRDS, VRRDS, and ESDS VSAM spheres.
PATH access for KSDS and ESDS's is allowed with RLS. Extended format,
extended addressibility, spanned, and compression are also supported with RLS.

RLS and non-RLS VSAM data sets can co-exist.

5.1.2 Why RLS?
RLS allows concurrent access, in a sysplex, to your VSAM data sets at record
level, while maintaining data integrity.

VSAM RLS also addresses other VSAM issues, mainly in the CICS environment.
Refer to “CICS and VSAM RLS” on page 246.

5.1.3 How does RLS work?
RLS logic is implemented in programs running in a VSAM address space named
SMSVSAM, these programs gain the control from the RLS requesters through
cross memory (PC instruction). The major difference between RLS and non-RLS
modes is that the VSAM sphere control block structure is located in a CF cache
structure and it is shared by all string task programs (also called users) in RLS
244 VSAM Demystified

mode. Refer to “VSAM sharing mechanisms” on page 216 for details of control
block structures.

Figure 5-1 shows in a very simplified form how a VSAM spheres is shared
between various address spaces (CICS and Batch jobs) across a Parallel
Sysplex. Each z/OS system in the sysplex has an SMSVSAM address space to
co-ordinate the sharing. Shared Control Data Set (SHCDS) contains critical
information that is used by various SMSVSAM address spaces for RLS. The
coupling facility contains:

� Lock structure IGWLOCK00 which contains global locks to serialize at record
level and to serialize functions as splits.

� Cache structures used to hold shared data and control block structures.

Figure 5-1 RLS in Sysplex

5.1.4 RLS in a single system (monoplex)
You may access VSAM sphere in RLS mode by users running in just one z/OS
image. However, even in a monoplex environment a Coupling facility is required.
Figure 5-2 shows an example of such a setup.

z/OS SYSTEM 1

SMSVSAM

z/OS SYSTEM 2

SMSVSAM

SHCDS

VSAM

IGWLOCK00

cache

cachecache
cache

Coupling Facility

Shared DASD

Shared DASD

CICS BATCH1 BATCH2 CICS BATCH1 BATCH2
 Chapter 5. VSAM Record Level Sharing 245

The reason for doing that is to exploit the better serialization provided by RLS.
For example, in a non-RLS mode two jobs trying to access for update a cluster
with total read and write integrity, that is, SHAREOPTIONS (1,3), just one can
open the cluster. The other needs to wait for the first to close the cluster. The
granularity of the serialization is at cluster level.

If the two jobs access the cluster in RLS mode, then both the OPENs will
succeed, and both in parallel can update the cluster. The serialization is at logical
record level.

Figure 5-2 RLS in Monoplex

5.1.5 CICS and VSAM RLS
Without VSAM RLS, CICS uses a process known as function shipping to share
spheres between CICS systems. Function shipping is implemented by using a
single CICS region known as a File Owning Region (FOR) to own a data set. All
access to the data set was through the corresponding FOR, a focal point for
VSAM access. The role of the FOR is simply to provide file access; the CICS
transactions run elsewhere in Application Owning Regions (AORs). These
regions run programs which, when they want to access a shared VSAM sphere,

S H C D S

V S A M

I G W L O C K 0 0

c a c h e

c a c h ec a c h e
c a c h e

C o u p l i n g F a c i l i t y

z / O S S Y S T E M

S M S V S A M

C I C S B A T C H 1 B A T C H 2
246 VSAM Demystified

ship the access request off to the FOR for that sphere and await the reply from
the FOR. This is illustrated in Figure 5-3.

This implementation has several problems as:

� Function shipping between AORs and FORs in distinct systems, consuming
resources.

� The FOR is a single point of failure and can also be a CPU bottleneck

� Locks are held by CICS/FOR. An in-doubt lock held by a CICS task can cause
an integrity problem if FOR fails. In this case, there is no way to prevent other
applications from accessing uncommitted data. With RLS, locks are held by
SMSVSAM (not by CICS/FOR). Then the locks held by an in-doubt CICS task
can be held if a CICS fails, preventing other applications from accessing
uncommitted data until CICS is restarted or the locks are released by an
operator command.

� Need of committing remotely.

� HURBA/HARBA are updated only when CICS closes the data set, causing
conflicts along shared updates.

These problems are fully addressed by VSAM RLS.
 Chapter 5. VSAM Record Level Sharing 247

Figure 5-3 CICS before VSAM RLS

CICS with VSAM RLS is shown in Figure 5-4. The RLS data sharing environment
is designed to support sharing of VSAM spheres among multiple cloned AORs.
With VSAM RLS, we no longer need file-owning regions (FOR). Each copy of
z/OS contains an SMSVSAM address space which manages locks within a
coupling facility. Coupling facility configurations can be designed to be highly
available. As we no longer have file owning regions, we have removed the single
point of failure. We can also scale by adding z/OS systems to the parallel
sysplex, with each new system running a SMSVSAM address space.

Problems:
CICS FOR is a single point of failure
Multiple system performance is no acceptable (uses VTAM or XCF cross
system)
No exploitation of System/390 Parallel Sysplex

File Owning Region

CICS
AOR

CICS
AOR

CICS
AOR

CICS
AOR

CICS
FOR

VSAM

z/OS 1 z/OS n

Application Owning Region
248 VSAM Demystified

Figure 5-4 CICS after VSAM RLS

For more details about VSAM RLS and CICS refer to the following publications:

� CICS and VSAM Record Lavel Sharing: Implementation Guide, SG24-4766
� CICS and VSAM Record Lavel Sharing: Planning Guide, SG24-4765
� CICS VSAM Recovery User’s Guide and Reference, SH26-4127

5.1.6 RLS restrictions
There are restrictions that need to be considered before implementing RLS.

� To share a VSAM sphere under RLS, the sphere must be SMS managed

� IDCAMS currently does not have access to the control blocks in SYSVSAM
address space. You will not be able to use IDCAMS to obtain information
pertaining to RLS.

� Linear, keyrange, and temporary data sets are not supported under RLS.

Attention: The version of CICS supporting RLS is CICS/TS.

D ata C ac h e s

C IC S
A O R

C IC S
A O R

C IC S
A O R

C IC S
A O R

V S A M R L S
in s tan c e 1

V S A M R L S
in s ta n ce n

z /O S 1 z/O S n

Locks
D ata C aches

C oup ling Fac ility

Locks

D ata C ache
 Chapter 5. VSAM Record Level Sharing 249

� Because the control block structure is shared, RLS does not use share
options.

� RLS does not support data striping.

5.2 RLS terminology
The terminology used in RLS books is sometimes different from the terms used
more widely in z/OS and SMS. Therefore, it is worthwhile to define the RLS
terms to avoid confusion.

SMSVSAM
This is the z/OS jobname of the RLS address space. This is created on each
z/OS image according to PARMLIB specifications. It is responsible for
centralizing in one z/OS all processing necessary for cross system sharing, that
is, the access to the CF (with data, control block structures and locks) and
connect among its peers through XCF.

VSAM sphere
A sphere is the name used to represent the components (data/index) and all the
AIX of several related VSAM clusters.

RLS client
This is any address space which invokes a RLS function which results in a PC to
the SMSVSAM address space. Examples of RLS functions are: OPENs,
CLOSEs, GETs, PUTs, DELETEs, and so on. Examples of RLS client spaces
are CICS, "batch jobs", CATALOG, DSS, HSM, and so on.

Subsystem
This is an RLS client space that "registers" with the SMSVSAM address space as
an address space that provides recovery (that is, forward/backward logging).
CICS is an example of recoverable subsystem.

Batch
This is an RLS client address space that does not first register with SMSVSAM
as a recoverable subsystem (that is, does not provide logging). Examples of
batch address spaces are: non-CICS VSAM applications, Batch, CATALOG,
DSS, HSM, and so on).
250 VSAM Demystified

Record lock
This is an XES lock resource obtained by SMSVSAM on behalf of a user and
associated with a logical record. The lock resource name is based on a 16 byte
hashed version of the record's key (or RBA, or RRN), as well as the sphere name
and component name. There are also other locks to serialize splits, for example.

True contention
This is when two different "users" attempt to access the same record lock at the
same time. Reported as true contention on the D SMS,CFLS command and in
RMF reports. You need to tune your application if you have high true contention
rates, or use NRI for reads.

False contention
This is when VSAM RLS assigns locked resources to an entry value in the lock
table, and uses this entry value to quickly check whether a resource is already
locked. If the lock structure (and thus the lock table) is too small, many locks can
be represented by a single value, making "false" lock contention possible. False
lock contention occurs when two different locks on different resources attempt to
use the same lock entry. The second lock requester is suspended until VSAM
RLS determines that there is no real lock contention on the resource.

This is reported as false contention on the D SMS,CFLS command. For high
false contention rates need to create a larger lock structure.

True/False or False/False contention
This occurs when either true contention or false contention occurs, and the
holder releases the record before the RLS contention exit runs. At this point RLS
cannot tell between true or false contention. This type of contention is reported
as false contention on the D SMS,CFLS. See Figure 5-13.

Deadlocks
This occurs when two different transactions, each holding a record lock, attempt
to obtain the other transactions record lock. SMSVSAM abnormally terminates
one of the waiting lock requests (RPL RC=8 RSN=21), based on the
Deadlock_detection value in your IGDSMSxx. Refer to 3.2.16, “Deadlocks” on
page 160.

Read integrity
SMSVSAM allows the user to decide about read integrity through parameters in
DD card or ACB macro. If the option is consistent read (CR), logical records locks
are required in shared mode for reads. If the option is no read integrity (NRI), no
locks are required along reads.
 Chapter 5. VSAM Record Level Sharing 251

Retained lock
This is a record lock obtained by a recoverable subsystem such as CICS, which
was still held at the time of a failure in: CICS, IGWLOCK00, CF, z/OS, other
SMSVSAM, or Indoubt transactions. A job can be cancelled without retained
locks because this job dose not register, as subsystem with SMSVSAM.

Lost Locks
A sphere is said to be in "Lost Locks" if the sphere was being accessed by a
recoverable subsystem when a failure to the lock structure occurs at the same
time as a failure in at least one of the SMSVSAM address spaces (double failure
scenario). Use the IDCAMS SHCDS LISTSUBSYS(ALL) command to list CICS
subsystems holding retained or lost locks. This situation can be avoided by
duplexing or failure isolation.

Recoverable sphere
This is a VSAM sphere which is accessed by a recoverable subsystem (that is,
CICS) which provides logging for the sphere. A recoverable sphere is defined by
the LOG(UNDO/ALL) attribute in the catalog.

Non-recoverable sphere
This is a VSAM sphere for which no logging is required. A non-recoverable
sphere is defined with the LOG(NONE) attribute in the catalog.

Quiesce a sphere
There is a special interface provided by RLS for CICS to close a sphere across
the sysplex. QUIESCE = YES is set in the catalog following the quiesce request.
There is a command “D SMS,SMSVSAM,QUIESCE” on page 275, that shows
the quiesce state of a sphere.

Quiesce transactions
There is a special interface provided to CICS and DSS, to temporarily halt
transactions for a given sphere in order for DSS to take a sharp copy (also called
a T0 copy).

Quiesce a volume or a cache
There is a command to SMSVSAM to stop new opens for RLS to a particular
volume or cache. The formats are as follows:

V SMS,CFVOL(volid),QUIESCE

V SMS,CFCACHE(cachename),QUIESCE
252 VSAM Demystified

Sharing control
This is a set of routines executing in the SMSVSAM address space which open,
format, read and write to the Sharing Control data sets (SHCDS). SHCDS -
Linear data sets, accessed by SMSVSAM in non-RLS mode which contain
"state" type information about RLS client spaces and VSAM spheres accessed
by SMSVSAM.

RLS mode
A sphere is said to be in RLS mode when it was last accessed by RLS. RLS
mode is indicated by the RLS-IN-USE indicator in the catalog.

5.3 Planning for RLS
This topic covers planning activities needed to implement RLS.

5.3.1 Hardware requirements
VSAM RLS uses the coupling facility (CF) to perform sphere level locking, record
locking, and data caching. If your system is running in a sysplex you already have
the necessary hardware to implement VSAM RLS.

If you are going to implement system-managed duplexing for RLS lock structure
for improved availability, then you would require additional CF storage, CF
processor capacity, and z/OS-to-CF link capacity in order to accommodate
duplexed VSAM RLS lock structure instances, and the duplexed VSAM RLS lock
structure operations to them from each participating z/OS image.

5.4 Implementing VSAM RLS
We describe the step-by-step procedure to implement VSAM RLS.

5.4.1 Define Sharing Control Data Set (SHCDS)
Here we give some considerations and examples to define SHCDS.

Note: If you want to implement VSAM RLS on a standalone z/OS system, to
share VSAM across multiple address spaces, then you must not run in
XCFLOCAL mode. A coupling facility is still needed for the lock structures
even though there is only a single z/OS image.
 Chapter 5. VSAM Record Level Sharing 253

What is its function?
The SHCDS is critical to maintaining data integrity in the event of the failures of
the Parallel Sysplex, SMSVSAM address space or the CF lock structure.

The SHCDS contains the name of the CF lock structure in use, a list of
subsystems, the status of the subsystems, a list of open spheres using the CF
and other information.

How do I define it?
You must use the following naming convention when defining your SHCDSs:

SYS1.DFPSHCDS.qualifier.Vvolser

Where:

qualifier is a 1 to 8 character qualifier.

volser is the volume serial number. The V prefix allows you to specify numeric
volume serial numbers.

How much space to allocate for SHCDS?
Use the following formula to calculate the size of your SHCDS:

S = (16 + (N * (16 + C/10))) kilobytes

Where:

S is the space required for the SHCDS.

N is the number of systems.

C is the number of concurrent OPEN requests that you expect.

Sample JCL to allocate SHCDS
The SHCDS may be defined using IDCAMS. See Example 5-1.

Example 5-1 Allocate SHCDS by IDCAMS

//ALLOCLD1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER (NAME(SYS1.DFPSHCDS.PRIMARY.VSMS001) LINEAR -
 STORCLAS(GSPACE) -
 SHAREOPTIONS(3 3) CYL(10 10) VOLUME(SMS001))
 DEFINE CLUSTER (NAME(SYS1.DFPSHCDS.SECONDARY.VSMS002) LINEAR -
 STORCLAS(GSPACE) -
 SHAREOPTIONS(3 3) CYL(10 10) VOLUME(SMS002))

Important: The SHCDS naming convention depends on the volume to match
the SHCDS name. So do not move SHCDS across volumes.
254 VSAM Demystified

 DEFINE CLUSTER (NAME(SYS1.DFPSHCDS.SPARE.VSMS003) LINEAR -
 STORCLAS(GSPACE) -
 SHAREOPTIONS(3 3) CYL(10 10) VOLUME(SMS003))
 /*

Example 5-2 shows how you can also use DD statements in JCL to allocate
these spheres. Use a data class defined with a cross-region share options value
of 3 and a cross-system share options value of 3.

Example 5-2 Allocating SHCDS using JCL DD statements

//PRISHCDS DD DSN=SYS1.DFPSHCDS.PRIMARY.VSMS001,SPACE=(1,(10,10)),
// RECORG=LS,STORCLAS=GSPACE,VOL=SER=SMS001,AVGREC=M,
// DISP=(NEW,CATLG)
//SECSHCDS DD DSN=SYS1.DFPSHCDS.SECONDRY.VSYS002,SPACE=(1,(10,10)),
// RECORG=LS,VOL=SER=SYS002,AVGREC=M,
// DISP=(NEW,CATLG)
//SPRSHCDS DD DSN=SYS1.DFPSHCDS.SPARE.VSMS003,SPACE=(1,(10,10)),
// RECORG=LS,STORCLAS=GSPACE,VOL=SER=SMS003,AVGREC=M,
// DISP=(NEW,CATLG)
/*

SHCDS considerations
� At a minimum, define and activate two SHCDSs and at least one spare

SHCDS for recovery purposes.

� Because the contents of these data sets are highly dynamic, we do not
recommend backup and restore functions for these data sets.

� The SHCDS is a VSAM linear data set.

� The CISIZE for SHCDS must be 4096.

� When defined, the SHCDS does not need to be catalogued on all systems in
the sysplex. If it is cataloged, it must be in a catalog available when
SMSVSAM initializes.

� If the SYS1.DFPSHCDS.qualifier.Vvolser cannot be catalogued into the
MCAT, use the multi level alias (MLA) facility (2 levels at least) and define a
SYS1.DFPSHCDS as alias in the MCAT.

� Place the SHCDSs on volumes with global connectivity.

� The share options for SHCDSs must be set to (3,3) so that each system in the
Parallel Sysplex can properly share the data sets.

� Use storage classes defined with the guaranteed space attribute.

� Avoid placing SHCDSs on volumes for which there might be extensive volume
reserve activity.
 Chapter 5. VSAM Record Level Sharing 255

� Secondary space definition is strongly recommended. All extents for each
data set must be on the same volume.

� SMSVSAM remembers the SHCDSs from one SMSVSAM recycle to the
next. Do not delete or redefine an active or spare SHCDS without first telling
SMSVSAM. Use the command V SMS,SHCDS(shcdsname),DELETE.

� SMSVSAM must be RACF authorized to update SYS1.DFPSHCDS.* data
sets. Refer to “Security definitions” on page 263.

� For some SHCDS errors, an IPL would NOT help because SHCDS is
remembered from one IPL to another. FALLBACK procedure documented in
“SHCDS FALLBACK procedure” on page 267 is the only way to correct the
problem. If you get repeated abends with the prefix '67' in the RSN code, then
you know it's time to do a FALLBACK.

5.4.2 Define CF cache structures
VSAM RLS uses the Coupling Facility (CF) which is accessible from all the z/OS
systems in the sysplex to maintain cache and lock structures to administer VSAM
RLS. You can define several cache structures but just one lock structure.

What is its function?
The CF cache structure maintains RLS local buffer pool consistency at the
control interval (CI) level of all SMSVSAM instances in a Parallel Sysplex. CF
cache structures contains the control block structure, being used as a system
buffer pool for VSAM RLS, providing a level of storage hierarchy between local
storage buffers and DASD cache. That is, RLS uses the cache structure for
store-through caching; along writes data is written from local buffer pool to DASD
as well as to the cache structure.

How to define it?
You use the IXCM2APU utility program to define the cache structures in the
CFRM couple data set. You should coordinate this activity with your z/OS
systems programmer. See the sample JCL in Example 5-3 to define the cache
structures.

Example 5-3 JCL to define RLS cache structures

//STEP01 EXEC PGM=IXCM2APU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

Important: Use the FALLBACK procedure only as the last resort when
everything else fails.
256 VSAM Demystified

 DATA TYPE(CFRM) REPORT(YES)
 DEFINE POLICY NAME(yourpolicy) REPLACE(YES)
 STRUCTURE NAME(CACHE01)
 SIZE(4000)
 INITSIZE(3000)
 PREFLIST(yourCF1)
 STRUCTURE NAME(CACHE02)
 SIZE(4000)
 INITSIZE(3000)
 PREFLIST(yourCF2)
/*

How to determine the cache size?
The total size of the cache structures should ideally be equal to the sum of the
local VSAM LSR buffer pool sizes. After you get that figure, you should divide this
size among the structures that will be defined. You can use the sizing tool
available at the following IBM site.

http://www-1.ibm.com/servers/eserver/zseries/cfsizer/vsamrls.html

Multiple cache structures
Once you have determined the total CF cache required, you may need to break
this down into individual cache structures. You can define multiple SMSVSAM
cache structures on different CFs and assign one or more CF cache structures to
each cache set associated with a storage class.

To make it simple, (1) the sphere points to a storage class; (2) the storage class
has the cache set name; (3) the cache set (in base SMS ACDS) has the name(s)
of the structure(s).

Having multiple cache sets allows you to provide different performance attributes
for spheres with distinct performance requirements. When more than one CF
cache structure is assigned to a cache set, spheres within that storage class are
cached in each CF structure in turn, in an effort of SMSVSAM to balance the
load.

Considerations
Cache structures are built at open time and they remain even after the close of a
sphere due to performance reasons (kept attribute). RLS uses LRU algorithms to
release the structures.

Cache must be large enough for the CF cache directories to contain an entry for
each of the VSAM RLS local buffers across all instances of the RLS server.
 Chapter 5. VSAM Record Level Sharing 257

http://www-1.ibm.com/servers/eserver/zseries/cfsizer/vsamrls.html

Enhancements allow VSAM spheres with a CI size greater than 4 KB records to
be cached.

5.4.3 Define CF lock structures
Here we explain how to define the lock structures.

What is its function?
The CF lock structure maintains the record-level locks and sphere-level locks to
enforce global serialization. The CF lock structure includes two parts:

� The lock table, which is used to determine whether there is R/W interest
among systems on a particular resource

� Record table space to keep track of information for retained locks and
spheres which have been processed by VSAM RLS

How do I define it?
The CF lock structure is named IGWLOCK00. You can use the same IXCMIAPU
utility that you used for CF cache structure to define the lock structure in the
CFRM couple data set, as well. See Figure 5-5 for sample jcl.

Figure 5-5 An example of defining a CF lock structure

How to determine the lock structure size?
You can use the following formula to estimate an initial size for the lock structure.

Size in Mega Bytes=10 * number_of_systems * lock_entry_size

The lock_entry_size depends on the MAXSYSTEM value defined for the sysplex
couple data set when it was initially defined by the IXCL1DSU format utility. The
MAXSYSTEM value represents the maximum number of systems that can be
exist in the Parallel Sysplex.

//STEP01 EXEC PGM=IXCMIAPU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=H
//SYSIN DD *
 DATA TYPE(CFRM) REPORT(YES)
 DEFINE POLICY NAME(CONFIG1) REPLACE(YES)
 STRUCTURE NAME(IGWLOCK00)
 SIZE(4000)
 PREFLIST(yourCF01)
258 VSAM Demystified

The lock_entry_size is 2 if the MAXSYSTEM is 7 or less. It is 4 if MAXSYSTEM
>= 8 and < 24 and will be 8 if MAXSYSTEM >= 24 and <= 32.

You can issue the following command to determine the MAXSYSTEM value.

DISPLAY XCF,COUPLE,TYPE=CFRM. See Figure 5-6.

Figure 5-6 Displaying MAXSYSTEM

You can use the sizing tool available at the following IBM site.

http://www-1.ibm.com/servers/eserver/zseries/cfsizer/vsamrls.html

Considerations on lock contentions
� You must monitor false contention to adjust the lock structure size. False

contention can be monitored via RMF or via the DISPLAY SMS,CFLS
command.

� The amount of real lock contention is application-dependent; it depends on
record access patterns. False lock contention is almost entirely determined by
the size of the lock table. That is, with a larger lock table having less false lock
contention than a smaller one.

-D XCF,COUPLE,TYPE=CFRM
 IXC358I 15.22.48 DISPLAY XCF 780
 CFRM COUPLE DATA SETS
 PRIMARY DSN: SYS1.XCF.CFRM04
 VOLSER: SBOX67 DEVN: 3F39
 FORMAT TOD MAXSYSTEM
 11/29/2001 13:36:18 4
 ADDITIONAL INFORMATION:
 FORMAT DATA
 POLICY(5) CF(4) STR(100) CONNECT(32)
 SMREBLD(1) SMDUPLEX(1)
 ALTERNATE DSN: SYS1.XCF.CFRM05
 VOLSER: SBOX68 DEVN: 3B39
 FORMAT TOD MAXSYSTEM
 11/29/2001 13:36:19 4
 ADDITIONAL INFORMATION:
 FORMAT DATA
 POLICY(5) CF(4) STR(100) CONNECT(32)
 SMREBLD(1) SMDUPLEX(1)
 CFRM IN USE BY ALL SYSTEMS
 Chapter 5. VSAM Record Level Sharing 259

http://www-1.ibm.com/servers/eserver/zseries/cfsizer/vsamrls.html

5.4.4 SMS definitions
This section defines which CF cache structures can be used to assign a VSAM
sphere.

Define the CF cache structures names to SMS
SMSVSAM uses the SMS storage class construct, that you define, to determine
which CF cache structures (varying sizes and performance levels) can be used
to assign a VSAM sphere to a CF cache structure. Refer to Figure 5-7 and
Figure 5-8.

Based on this you would then group similar (1 to 255) cache structures into
cache sets. The storage classes SC54GRT and SCRLS have a pointer to a
“cache set” named CSERLS.

These cache sets are defined in the BASE SMS construct and contains a list of
CF cache structures, in the example: RLS_CACHE1 and RLS_CACHE2.

A VSAM sphere opened in RLS mode must have a storage class assigned to it.

The first time an RLS VSAM sphere is opened in the Sysplex, SMVSAM picks
the best cache structure to use for the requested VSAM sphere and attempts to
connect with it.
260 VSAM Demystified

Figure 5-7 CF cache set in Storage Class

Figure 5-8 Cache Set assignment

There is also a weight storage class attribute indicating the data’s relative
importance in the CF DIRECT WEIGHT or the CF SEQUENTIAL WEIGHT fields.
Use the CF DIRECT WEIGHT field for direct data; use the CF SEQUENTIAL
WEIGHT field for sequential data. The default is a weight value of 6. You can
specify a value from 1 to 11, with 11 indicating the highest relative importance.

 Panel List Utilities Scroll Help
 --
 STORAGE CLASS LIST
 Command ===> Scroll ===> HALF
 Entries 11-21 of 28
 View in Use
 CDS Name : SYS1.SMS.SCDS

 Enter Line Operators below:

 LINE STORCLAS SUSTAINED DATA CF CACHE CF DIRECT CF SEQUENTIAL
 OPERATOR NAME RATE (MB/SEC) SET NAME WEIGHT WEIGHT
 ---(1)---- --(2)--- -----(15)----- --(16)-- --(17)--- ----(18)-----
 SCRLS --- CSERLS 6 6
 SCSDR1 --- -------- -- --
 SCSDR12 12 -------- -- --
 SCSDR32 32 -------- -- --
 SCTEST --- -------- -- --
 SC54GRT --- CSERLS 5 3
 SC54LOW --- -------- -- --
 SC54STD --- -------- -- --
 SC54TAPE --- -------- -- --
 STANDARD --- -------- -- --
 STRIPE 7 -------- -- --

 CF CACHE SET DISPLAY PAGE 1 OF 1
 Command ===>

 SCDS Name : SYS1.SMS.SCDS
 (001 Cache Sets Currently Defined)

 Cache Set CF Cache Structure Names
 CSERLS RLS_CACHE1 RLS_CACHE2

 Use UP/DOWN Command to View other Pages when multiple Pages are Shown;
 Use HELP Command for Help; Use END Command to Exit.
 Chapter 5. VSAM Record Level Sharing 261

The greater the weight value, the more important it is that the data be assigned
more cache resources less stealing), thereby improving cache hit rates for the
data.

5.4.5 Modifying the PARMLIB IGDSMSxx Member
In IGDSMSxx member you specify options for SYSVSAM.

Example 5-4 shows the RLS parameters in bold.

Example 5-4 IGDSMSxx parmlib member

SMS ACDS(SYS1.SMS.ACDS)
 COMMDS(SYS1.SMS.COMMDS)
 INTERVAL(15)
 DINTERVAL(150)
 DEADLOCK_DETECTION(15,4)
 SMF_TIME(YES)
 CF_TIME(1800)
 RLSINIT(YES)
 RLS_MAX_POOL_SIZE(100)
 REVERIFY(NO)
 ACSDEFAULTS(NO)
 PDSESHARING(EXTENDED)
 TRACE(ON)
 SIZE(128K)
 TYPE(ALL)
 JOBNAME(*)
 ASID(*)
 SELECT(ALL)
 OAMPROC(OAM)

RLSINIT
To use VSAM RLS, the SMSVSAM address space should be up and running. If
you specify RLSINIT=YES, the SMSVSAM address space starts as part of your
system initialization at IPL. If you specify NO, you need to start it later via the
VARY SMSVSAM,ACTIVE command. The default is NO.

Attention: SMSVSAM at z/OS 1.3 DFSMS only supports the default value. All
data is assigned a weight value of 6 regardless of the value you specify.

Note: There is one SMSVSAM address space in each image of z/OS.
262 VSAM Demystified

CF_TIME
Here you specify at what interval you want to collect SMF type 42 records
containing information and statistics on CF cache and lock structures. The
default is 3600 (one hour). Refer to “SMF record 42” on page 321.

DEADLOCK_DETECTION
This parameter specifies how frequently the dead lock detection routine is
invoked to check for local and global deadlocks. The the local deadlock detection
interval default is 15 seconds.

It also specifies the number of local deadlock cycles that must expire before
global deadlock detection is run, as a one to four digit numeric value in the range
1-9999. The default is 4 cycles. Refer to “What is a deadlock?” on page 160.

RLS_MAX_POOL_SIZE
This is the maximum buffer pool size SMSVSAM can use in MB. The default is
100 MB.

SMF_TIME
For systems running DFSMS/MVS Version 1.3 or later, this keyword specifies
whether DFSMS is to use SMF timing; that is, whether SMF type 42 records are
to be created at the expiration of the SMF interval period, synchronized with SMF
and RMF data intervals.

5.4.6 Security definitions
This section provides security definitions for access to the SHCDS data set and
access to use VARY SHCDS command.

Access to SHCDS
You should provide update access for SMSVSAM to the SCHCDS data set.
SMSVSAM should be authorized to update SYS1.DFPSHCDS.* data sets. If you
protect SYS1.* data sets, be sure that the userid associated with SMSVSAM is
able to access SYS1.DFPSHCDS.* for update.

You can issue the RACF command RLIST STARTED SMSVSAM,ALL to find out
the userid associated with SMSVSAM.

Use the following RACF command to give SMSVSAM access to SHCDS:

PERMIT SYS1.DFPSHCDS.* ACCESS(UPDATE) ID(smsvsam_userid)

Figure 5-9 shows the error messages you will get due to SHCDS access failure.
 Chapter 5. VSAM Record Level Sharing 263

Access to use VARY SHCDS command
To use the SHCDS command you should have should have access to the facility
class STGADMIN.IGWSHCDS.*. You can use the following RACF command to
provide this access.

PERMIT STGADMIN.IGWSHCDS.* CLASS(FACILITY) ID(youruserid)

Figure 5-9 SMSVSAM errors due to SHCDS access failure

5.4.7 Using a VSAM sphere in RLS mode
When all the above actions are implemented, the system is ready for VSAM RLS
processing.

To enable a VSAM sphere for RLS the following actions need to be taken:

� LOG parameter (NONE, UNDO or ALL) must be specified on the DEFINE
CLUSTER or the ALTER CLUSTER command for the sphere. Or you may
select one of the data classes containing such parameter.

� Option RLS in MACRF keyword in ACB (refer to “ACB control block” on
page 235) needs to be set. There is also the option RLSREAD keyword in
ACB where you indicate the type of read integrity (NRI or CR). Another way is
using the keyword RLS= (NRI / CR) in the DD card defining the sphere.

Attention: If you do not provide the necessary RACF access authority to
SMSVSAM it will fail to initialize.

 ICH408I JOB(SMSVSAM) STEP(SMSVSAM) 744
 SYS1.DFPSHCDS.WTSCPLX2.VSBOX52 CL(DATASET) VOL(SBOX52)
 INSUFFICIENT ACCESS AUTHORITY
 FROM SYS1.DFPSHCDS.* (G)
 ACCESS INTENT(UPDATE) ACCESS ALLOWED(NONE)
 IEF196I IEC161I 040(056,006,IGG0CLFT)-002,IEESYSAS,SMSVSAM,SYS00
 IEC161I 040(056,006,IGG0CLFT)-002,IEESYSAS,SMSVSAM,SYS00001,,,
 IEF196I IEC161I SYS1.DFPSHCDS.WTSCPLX2.VSBOX52
 IEC161I SYS1.DFPSHCDS.WTSCPLX2.VSBOX52
IEA794I SVC DUMP HAS CAPTURED: 760
 DUMPID=001 REQUESTED BY JOB (SMSVSAM)
 DUMP TITLE=COMPID=DF122,CSECT=IGWXSI20+0490,DATE=04/16/00,MAINT
 ID= NONE ,ABND=0F4,RC=00000024,RSN=67510404
 RSN67510404 67510404
264 VSAM Demystified

Figure 5-10 shows the messages presented in the MVS console when a job
using RLS starts.

Figure 5-10 MVS messages for a JOB using RLS

5.4.8 RLS Recoverable spheres
A recoverable sphere has an associated log and in a problem appearance it can
be processed for undo and also for redo. This attribute set in the catalog entry, by
DEFINE/ ALTER LOG keyword, is referred to a VSAM cluster.

The LOG keyword has the following options: NONE, UNDO or ALL (UNDO plus
REDO), with the following properties:

NONE means that the sphere is non-recoverable implying no logging. When this
option is used neither backout nor forward recovery logging is performed. If either
software or hardware damages the cluster, it will not be possible to recover the
cluster.

The other two options (UNDO or ALL) imply that the accessing application uses
a commit protocol allowing a recovery function through a log, in this case the
CICS log.

Attention: Your RLS specification about read integrity on the ACB
(RLSREAD) overrides the RLS specification on your JCL, if you specify in both
places.

IEF403I MHL#64C5 - STARTED - TIME=22.10.03 - ASID=0027 - SC64
ICH70001I MHLRES2 LAST ACCESS AT 21:53:13 ON FRIDAY, MARCH 14, 2003
$HASP373 MHL#63C5 STARTED - INIT 2 - CLASS A - SYS SC63
IGW500I DFSMS CACHE CHARACTERISTICS FOR 705
VSAM COMPONENT NAME: MHLRES2.VSAM.RLSEXT.INDEX
DFSMS CF CACHE STRUCTURE NAME: RLS_CACHE
CI SIZE: 1536
CF CACHING SIZE: 2048
DFSMS DATACLASS NAME: RMMCDS
DFSMS RLSCFCACHE DATACLASS KEYWORD VALUE: ALL
IGW500I DFSMS CACHE CHARACTERISTICS FOR 706
VSAM COMPONENT NAME: MHLRES2.VSAM.RLSEXT.DATA
DFSMS CF CACHE STRUCTURE NAME: RLS_CACHE
CI SIZE: 4096
CF CACHING SIZE: 4096
DFSMS DATACLASS NAME: RMMCDS
DFSMS RLSCFCACHE DATACLASS KEYWORD VALUE: ALL
 Chapter 5. VSAM Record Level Sharing 265

UNDO means that transactional recovery is required. To support this option, the
accessing application must support a two phase commit and backout protocol.
During the life of a transaction, changes are protected by record level locks which
prevent the changes from being seen by other applications that also support
locking.

REDO means a forward recovery capability in the case of a lost or overlaid
sphere. If you do not have an application that can perform forward recovery of the
VSAM sphere, such as CICS/VR, there is no point in specifying LOG(ALL). It
generates the overhead of creating the redo images of the records, but no ability
to do anything with that information.

5.5 RLS problem determination and recovery
In this section we describe common problems with RLS and suggest some
actions. There are a number of information APARs in IBMLINK that describe
common problems in VSAM and what you can do resolve them. These APARs
also tell you what documents you should collect before reporting the problem to
IBM. Please review APAR II12927 as a starting point.

5.5.1 Problems with SHCDS
Please review “SHCDS considerations” on page 255 to ensure that you have
taken care of those issues when you defined your SHCDS. Refer to information
APAR II13326 (“II13326 - Common problems with SHCDS” on page 444) for
guidelines to diagnose SHCDS problems. Also review IBMLINK items
BDC000010564 (“BDC000010564” on page 451) and BDC000007033
(“BDC000007033” on page 459).

5.5.2 Problems with SMSVSAM
You can get into SMSVSAM initialization problems due to various reasons. One
of the most common causes is when SMSVSAM does not have access to your
SHCDS. Information APAR II12603 (“II12603” on page 465) gives you some tips
to diagnose and recover from SMSVSAM problems. APAR II12243 (“II12243” on
page 467) tells you how to properly terminate SMSVSAM.

5.5.3 Problems with locks
Please remember that if an SMSVSAM is holding a lock only that SMSVSAM can
release it. If you get into locking problems, even an IPL may not resolve the
problem if the lock is held by another SMSVSAM on another system in the
sysplex. IBMLINK has some information that will help you with lock problems.
266 VSAM Demystified

IBMLINK entry BDC000022923 (“BDC000022923” on page 468) describes a
looping problem if you define a very large size for your lock structure. Item
RTA000141603 (“RTA000141603” on page 475) show how resolve IGWLOCK00
rebuild problems due to loss of connectivity to the sysplex.

5.5.4 SHCDS FALLBACK procedure
For some SHCDS errors, FALLBACK is the only way to correct the problem and
to get the SMSVSAM to initialize successfully again. If you get repeated abends
with the prefix “67” in the RSN code, you may have to rely on FALLBACK as the
last resort. The following errors might require FALLBACK:

� Abend0F4 RC24 RSN675D0355
� Abend0F4 RC24 RSN67260989
� Abend0F4 RC24 RSN675F0398

FALLBACK procedure is documented in z/OS V1R3.0 DFSMSdfp Storage
Administration Reference. In a nutshell, FALLBACK reformats the SHCDS and
therefore clears all the errors.

FALLBACK involves:

� Terminate all SMSVSAMs in the sysplex by issuing using the command:
VARY SMS,SMSVSAM,TERMINATESERVER

� Then issue the command: VARY SMS,SMSVSAM,FALLBACK

� Reply Yes, to the WTOR that you are sure you want to FALLBACK

� Reactivate SMSVSAM using the command: VARY SMS,SMSVSAM,ACTIVE

On the first system, you will be asked to specify 2 ACTIVE and 1 SPARE
SHCDS.

To add an active SHCDS issues the command:

VARY SMS,SHCDS(SHCDS_name),NEW

To add a spare SHCDS issues the command:

VARY SMS,SHCDS(SHCDS_name),NEWSPARE

5.5.5 RLS rules
RLS enforces some rules when you have sphere open in RLS and non-RLS
modes.

Attention: If you have serious problems with SHCDS an IPL would NOT fix
the problem because SHCDS name is remembered from one IPL to another
 Chapter 5. VSAM Record Level Sharing 267

RLS open rules
� RLS OPENs for input/output fails, if the sphere is already opened for non-RLS

output.

� RLS OPENs for input/output fails, if the sphere is already opened for non-RLS
input, except if the sphere has been defined as SHAREOPTION(2,x). The
non-RLS inputter does not have read integrity.

� RLS OPENs for output of a recoverable sphere by a batch client fails.

� RLS OPENs for a sphere which is either quiesced (or is quiescing) will be
failed (QUIESCE=YES in catalog).

� RLS OPENs for a sphere that has not been assigned a CF cache via the SMS
STORCLAS construct fails.

� Empty KSDSs - RLS allows opening of an empty KSDS without first loading
the data set. In other modes (NSR, RLS) this is not possible.

� Positioning - RLS does not do implicit positioning to the beginning of the data
set for SEQ processing. An explicit POINT is required.

Close and delete rules
� A RLS CLOSE is “not successful” if the SMSVSAM address space has

recycled since the ACB was opened. One of the following messages are
presented: IEC251I 16-0608 or IEC251I 16-0609.

� A Catalog DELETE deletes all retained or lost locks, if the owner is not an
RLS subsystem. Refer to “RLS terminology” on page 250 to see the definition
of an RLS subsystem. The DELETE does not delete CICS log records,
because CICS is a subsystem.

5.5.6 MVS commands for RLS
Here are some commands to become familiar with. They have been changed or
added to support RLS.

D XCF,STR,STRNAME=IGWLOCK00
Use this command to display the lock structure. See Figure 5-11 and Figure 5-12
for sample output of the command.
268 VSAM Demystified

Figure 5-11 Display the lock structure

D XCF,STR,STRNAME=IGWLOCK00
IXC360I 19.59.09 DISPLAY XCF 097
STRNAME: IGWLOCK00
 STATUS: REASON SPECIFIED WITH REBUILD START:
 OPERATOR INITIATED
 DUPLEXING REBUILD
 METHOD : SYSTEM-MANAGED
 AUTO VERSION: B8FC8279 72B01005
 REBUILD PHASE: DUPLEX ESTABLISHED
 POLICY INFORMATION:
 POLICY SIZE : 28600 K
 POLICY INITSIZE: 14300 K
 POLICY MINSIZE : 0 K
 FULLTHRESHOLD : 80
 ALLOWAUTOALT : NO
 REBUILD PERCENT: 75
 DUPLEX : ALLOWED
 PREFERENCE LIST: CF01 CF02
 ENFORCEORDER : NO
 EXCLUSION LIST IS EMPTY
DUPLEXING REBUILD NEW STRUCTURE

 ALLOCATION TIME: 02/15/2003 11:16:05
 CFNAME : CF02
 COUPLING FACILITY: 002064.IBM.02.000000010ECB
 PARTITION: D CPCID: 00
 ACTUAL SIZE : 14336 K
 STORAGE INCREMENT SIZE: 256 K
 PHYSICAL VERSION: B8FC827A A4E7CF02
 LOGICAL VERSION: B8FC73F0 F2A13441
 SYSTEM-MANAGED PROCESS LEVEL: 8
 XCF GRPNAME : IXCLO001
 DISPOSITION : KEEP
 ACCESS TIME : NOLIMIT
 NUMBER OF RECORD DATA LISTS PER CONNECTION: 16
 MAX CONNECTIONS: 4
 # CONNECTIONS : 3

 CONNECTION NAME ID VERSION SYSNAME JOBNAME ASID STATE
 ---------------- -- -------- -------- -------- ---- ----------------
 SC63 01 0001006E SC63 SMSVSAM 0009 ACTIVE NEW,OLD
 SC64 03 00030079 SC64 SMSVSAM 0009 ACTIVE NEW,OLD
 SC65 02 0002007A SC65 SMSVSAM 0009 ACTIVE NEW,OLD
 Chapter 5. VSAM Record Level Sharing 269

Figure 5-12 Display the lock structure (continued)

D SMS,CFLS
This command displays the following information about the CF lock structure:

� Size
� Status
� Contention rate
� False contention rate

See Figure 5-13 for a sample output of the command.

DUPLEXING REBUILD OLD STRUCTURE

 ALLOCATION TIME: 02/15/2003 10:11:03
 CFNAME : CF01
 COUPLING FACILITY: 002064.IBM.02.000000010ECB
 PARTITION: E CPCID: 00
 ACTUAL SIZE : 14336 K
 STORAGE INCREMENT SIZE: 256 K
 PHYSICAL VERSION: B8FC73F0 F2A13441
 LOGICAL VERSION: B8FC73F0 F2A13441
 SYSTEM-MANAGED PROCESS LEVEL: 8
 XCF GRPNAME : IXCLO001
 ACCESS TIME : NOLIMIT
 NUMBER OF RECORD DATA LISTS PER CONNECTION: 16
 MAX CONNECTIONS: 4
 # CONNECTIONS : 3
270 VSAM Demystified

Figure 5-13 Sample output of D SMS,CFLS

D SMS,CFCACHE(structurename or *)
This command displays information about cache structures in the CF. See
Figure 5-14 for a sample output.

-D SMS,CFLS
 IEE932I 236
 IGW320I 14:52:52 Display SMS,CFLS
 PRIMARY STRUCTURE:IGWLOCK00 VERSION:B8FC73F0F2A13441 SIZE:14336K
 RECORD TABLE ENTRIES:36258 USED:3
 SECONDARY STRUCTURE:IGWLOCK00 VERSION:B8FC827AA4E7CF02 SIZE:14336K
 RECORD TABLE ENTRIES:36258 USED:3
 LOCK STRUCTURE MODE: DUPLEXED
 System Interval LockRate ContRate FContRate WaitQLen
 14:52:52 Display SMS,CFLS
 SC64 1 Minute 3.3 25.969 0.000 0.33
 SC64 1 Hour 84.0 4.797 0.416 0.10
 SC64 8 Hour 17.8 1.004 0.092 0.01
 SC64 1 Day 7.7 0.354 0.044 0.00
 (03) 1 Minute 2.2 17.714 0.000 0.19
 (03) 1 Hour 56.0 3.220 0.282 0.05
 (03) 8 Hour 11.4 0.671 0.059 0.00
 (03) 1 Day 4.5 0.236 0.024 0.00
 ***************** LEGEND ******************
 LockRate = number of lock requests per second
 ***************** LEGEND ******************
 LockRate = number of lock requests per second
 CONTRATE = % of lock requests globally managed
 FCONTRATE = % of lock requests falsely globally managed
 WaitQLen = Average number of requests waiting for locks
 Chapter 5. VSAM Record Level Sharing 271

Figure 5-14 Sample of CFCACHE display

D SMS,CFVOL(volid)
This command will display a list of coupling facilities cache structures that contain
data for the specified volume (volid) and the status of the volume.

-D SMS,CFCACHE(*)
 IEE932I 035
 IGW530I DFSMS CF STRUCTURES

 DFSMS CF CACHE STRUCTURE TO SYSTEM CONNECTIVITY

 SYSTEM ==> 00000000011111111112222222222333
 IDENTIFIER ==> 12345678901234567890123456789012

 RLS_CACHE ++..............................

 SYSTEM 1 = SC64 SYSTEM 2 = SC65 SYSTEM 3 =
 SYSTEM 4 = SYSTEM 5 = SYSTEM 6 =
 SYSTEM 7 = SYSTEM 8 = SYSTEM 9 =
 SYSTEM 10 = SYSTEM 11 = SYSTEM 12 =
 SYSTEM 13 = SYSTEM 14 = SYSTEM 15 =
 SYSTEM 16 = SYSTEM 17 = SYSTEM 18 =
 SYSTEM 19 = SYSTEM 20 = SYSTEM 21 =
 SYSTEM 22 = SYSTEM 23 = SYSTEM 24 =
 SYSTEM 25 = SYSTEM 26 = SYSTEM 27 =
 SYSTEM 28 = SYSTEM 29 = SYSTEM 30 =
 SYSTEM 31 = SYSTEM 32 =

 DFSMS CF CACHE TOTAL SPHERES ACTIVE CACHE
 STRUCTURE STATUS: CONNECTED: FEATURE LEVEL:
 RLS_CACHE = CF_ENABLED - -NONE-
 = -
 = -

 DFSMS CF CACHE FEATURE STATUS:
 A = SMS RlsCfCache Data Class values honored

Attention: If there is the name of the structure without the system names, it
means that the structure is defined in SMS but does not exist in the CF.
272 VSAM Demystified

D SMS, MONDS(specmask or *)
This command will display the sphere specifications eligible for coupling facilities
statistics monitoring. This monitoring is activated by the command; see “VARY
SMS,MONDS(dsname{,dsname...}),ON|OFF” on page 276. You can specify a full
or partial sphere name (specmask) to view a subset of the sphere specifications.
You must specify at least one high level qualifier. A wildcard in the sphere name
cannot be followed by additional qualifiers. Specify ‘*’ to display all the sphere
specifications eligible for coupling facilities statistics monitoring.

D SMS,SHCDS
This command will display the following information about the sharing control
data sets.

� Name
� Size
� Amount of free space for the active and spare SHCDS
� Whether the data set is usable

See Figure 5-15 for a sample output. Please note that it displays only the last two
qualifiers of the SHCDS names. You should read it as
SYS1.DFPSHCDS.WTSCPLX2.VSBOX48 and so on.

Figure 5-15 Sample output of D SMS,SHCDS

D SMS, SMSVSAM [,ALL]
This will display the status of the SMSVSAM server on this system or all the
SMSVSAM servers and lock table connection status.

-D SMS,SHCDS
 IEE932I 045
 IGW612I 19:01:43 DISPLAY SMS,SHCDS
 Name Size %UTIL Status Type
 WTSCPLX2.VSBOX48 10800Kb 4% GOOD ACTIVE
 WTSCPLX2.VSBOX52 10800Kb 4% GOOD ACTIVE
 WTSCPLX2.VSBOX49 10800Kb 4% GOOD SPARE
 ----------------- 0Kb 0% N/A N/A
 ----------------- 0Kb 0% N/A N/A
 ----------------- 0Kb 0% N/A N/A
 ----------------- 0Kb 0% N/A N/A
 ----------------- 0Kb 0% N/A N/A
 ----------------- 0Kb 0% N/A N/A
 ----------------- 0Kb 0% N/A N/A
 Chapter 5. VSAM Record Level Sharing 273

.

Figure 5-16 Output of D SMS,VSAM,ALL

-D SMS,SMSVSAM,ALL
 IEE932I 049
 IGW420I DISPLAY SMS,SMSVSAM,ALL
 DISPLAY SMS,SMSVSAM - SERVER STATUS
 SYSNAME: SC64 AVAILABLE ASID: 0009 STEP: SmsVsamInitComplete
 SYSNAME: SC65 AVAILABLE ASID: 0009 STEP: SmsVsamInitComplete
 SYSNAME: SC63 AVAILABLE ASID: 0009 STEP: SmsVsamInitComplete
DISPLAY SMSVSAM - JOB STATUS
 SUBSYSTEMS CONNECTED: 0 BATCH: 3
DISPLAY SMSVSAM - LOCK TABLE STATUS (IGWLOCK00)
 CONNECT STATUS:
 SYSNAME: SC64 ACTIVE RSN: 02010407 RbldNotActive
 SYSNAME: SC65 ACTIVE RSN: 02010407 RbldNotActive
 SYSNAME: SC63 ACTIVE RSN: 02010407 RbldNotActive
COMPOSITE STATUS:
 ORIGINAL STRUCTURE: NOT VOLATILE NOT FAILURE ISOLATED
 NEW STRUCTURE: NOT VOLATILE NOT FAILURE ISOLATED
STRUCTURE STATUS:
 SYSNAME: SC64 Duplex
 SYSNAME: SC65 Duplex
 SYSNAME: SC63 Duplex
DISPLAY SMS,SMSVSAM - SMF RECORD 42 STATUS
 SMF_TIME CF_TIME ----- SUB-TYPE SUMMARY -----
 15 16 17 18 19
 SYSNAME: SC64 YES- 3 1800- 3 YES YES YES YES YES
 SYSNAME: SC65 YES- 2 1800- 2 YES YES YES YES YES
 SYSNAME: SC63 *YES- 1 1800- 1 YES YES YES YES YES
 SYSNAME:-.. -..
*SMSVSAM SMF 42 RECORDS ARE WRITTEN FROM THIS SYSTEM.
 RECORDS ARE WRITTEN WHEN SMF GLOBAL INTERVAL EXPIRES.
DISPLAY SMS,SMSVSAM - GLOBAL CACHE FEATURE PARMLIB VALUES
 MAXIMUM CF CACHE FEATURE LEVEL = Z
DISPLAY SMS,SMSVSAM - CACHE FEATURE CODE LEVEL VALUES
 SYSNAME: SC63
 CACHE FEATURE CODE LEVEL = A
 SYSNAME: SC65
 CACHE FEATURE CODE LEVEL = A
 SYSNAME: SC64
 CACHE FEATURE CODE LEVEL = A
 SYSNAME:
 CACHE FEATURE CODE LEVEL =
CACHE FEATURE LEVEL DESCRIPTION:
 Z = No Caching Advanced functions are available
 A = Greater than 4K Caching code is available
274 VSAM Demystified

D SMS,SMSVSAM,QUIESCE
This will display the status of all active VSAM record-level sharing (VSAM/RLS)
sphere quiesce events on the system that the command is entered. (This is not a
Sysplex-wide command.)

SETSMS RLS_MAXCFFEATURELEVEL({A|Z})
This command specifies the method that VSAM RLS uses to determine the size
of the data that is placed in the CF cache structure. If you specify A, caching
proceeds using the RLSCFCACHE keyword characteristics that are specified in
the SMS data class that is defined for the VSAM sphere. If you do not specify a
value, or if you specify Z, then only VSAM RLS data that have a Control Interval
(CI) value of 4K or less are placed in the CF cache structure. The default is Z.
Refer to “Modifying the PARMLIB IGDSMSxx Member” on page 262 for more
information.

SETSMS BMFTIME(nnnnn)
This command specifies that SMS is to allow nnnnn seconds (1 to 86399) to
elapse between the production of SMS BMF records. The default is 3600
seconds.

SETSMS LRUCYCLES(cycles)
This will specify the maximum number of times (5 to 240) that the buffer
management facility (BMF) least recently used (LRU) routine will pass over
inactive buffers before making them available for reuse. While this parameter
sets the maximum value, BMF will dynamically change the actual number of
times it passes over inactive buffers.

SETSMS LRUTIME(seconds)
This command specifies the number of seconds (5 to 60) that the buffer
management facility (BMF) will wait between calls to the BMF data space cache
least recently used (LRU) routine. That routine releases inactive buffers in the
BMF data space that are used to cache partitioned data set extended (PDSE)
directory data. LRUTIME is related to LRUCYCLES. A change to the LRUTIME
value introduced by this parameter will take effect on the next execution of the
LRU routine. Most installations should use the default value. In some very high
data rate situations you may want to tune this value. You should monitor the SMF
42 type 1 record to determine the amount of caching activity in the BMF data
space. See z/OS MVS System Management Facilities (SMF) for information
about the buffer management statistics recorded in SMF record type 42. The
default value is 15 seconds.
 Chapter 5. VSAM Record Level Sharing 275

SETSMS CF-TIME(nnn or 3600)
This command specifies the number of seconds between recording SMF 42
records related to SMSVSAM coupling facility use (subtypes 15, 16, 17 and 18).
SMF_TIME(YES) overrides this parameter.

SETSMS DEADLOCK_DETECTION(iiii,kkkk)
This command specifies the deadlock detection intervals used by SMS.

iiii is a 1 to 4 digit numeric value in the range 1-9999 that specifies the length in
seconds of the local deadlock detection interval. The default for iiii is 15 seconds.

kkkk 1 to 4 digit numeric value in the range 1-9999 that specifies the number of
local deadlock cycles that must expire before global deadlock detection is
performed. The default for kkkk is 4 local cycles.

VARY SMS,CFCACHE(structurename)
Issue this command to change the state of a cache structure and specify the
name of the cache structure.

If you specify ENABLE, VSAM RLS data can be stored in cache structure. This is
the normal state of operations and the state the coupling facility cache structure
is in after sysplex IPL. If you specify QUIESCE, you cannot store any VSAM RLS
data in the cache structure. The QUIESCE operation is not complete until the
state of the volume is quiesced. Use the D SMS,CFVOL to determine the state of
the volume.

VARY SMS,CFVOL(volid)
Use this command to change the state of a volume as it relates to coupling
facility cache structures, specify the volume (volid). If you specify ENABLE, data
contained on this volume can be stored in a coupling facility cache structure. This
is the normal state of operations. If you specify QUIESCE, you cannot store any
data from the volume on the coupling facility cache structure.

Note: If you specify QUIESCE, SMS may still select the volume during data set
allocation. To stop SMS from selecting this volume, see “Changing the SMS
Status of a Storage Group or Volume” on page 575.

VARY SMS,MONDS(dsname{,dsname...}),ON|OFF
This will specify the data set name (dsname) or data set names
(dsname{,dsname...}). If you want to be eligible for coupling facility statistical
monitoring, specify ON. Now, the commands are generic for the CF structures.

To indicate that the specified data set is no longer eligible for statistical
monitoring, specify OFF. Monitoring is tracked through SMF record 42 subtype
276 VSAM Demystified

16. You can specify a full or partial data set name with at least one high level
qualifier. An asterisk cannot be followed by other qualifiers. You can specify up to
16 data set names with each command. This command affects activity for the
specified data sets across all systems in the sysplex.

VARY SMS,SHCDS(shcdsname)
Issue this command to add or delete a sharing control data set (SHCDS), specify
the name of the SHCDS. If you specify NEW, a new active SHCDS named
(shcdsname) will be added. If you specify NEWSPARE, a new spare SHCDS
named (shcdsname) will be added. If you specify DELETE, a SHCDS named
(shcdsname) will be deleted. This SHCDS can be either an active or a spare
SHCDS. Note: The sharing control data set (SHCDS) is identified by the dsname
SYS1.DFPSHCDS.qualifier.Vvolser. When specifying its name (shcdsname) in
this command, do not use the fully-qualified name. Use only qualifier.Vvolser as
the shcdsname, without the SYS1.DFPSHCDS prefix, when specifying the name
of the SHCDS.

VARY SMS,SMSVSAM, xxxxx
Use this command to manage SMSVSAM data sets or the SMSVSAM address
space, specify one of the following parameters where xxxxx is:

� ACTIVE. Restarts the SMSVSAM server and re-enables the automatic restart
facility for the server. This command will not function if the SMSVSAM
address space was terminated with a FALLBACK command.

� SPHERE. Clears the VSAM-quiesced state for the specified sphere.
Normally, this operation is done under application program control. This
command is required only in rare circumstances.

� FALLBACK. Is used as the last step in the disablement procedure to fall back
from SMSVSAM processing. For the SMSVSAM fallback procedure, see
z/OS DFSMSdfp Storage Administration Reference.

� TERMINATESERVER. Abnormally terminates an SMSVSAM server. The
server will not automatically restart after the termination. After some recovery
action is complete, you can restart the SMSVSAM server with the V
SMS,SMSVSAM,ACTIVE command. Use this command only for specific
recovery scenarios that require the SMSVSAM server to be down and not to
restart automatically.

� FORCEDELETELOCKSTRUCTURE. Deletes the lock structure from the
coupling facility and deletes any data in the lock structure at the time the
command is issued. You must reply to the confirmation message with the
response, FORCEDELETELOCKSTRUCTURESMSVSAMYES, before the
command takes effect. Use this command only in the event of a volume loss.
 Chapter 5. VSAM Record Level Sharing 277

5.6 RLS enhancements
What follows is a list of RLS enhancements. The majority of them are introduced
in z/OS DFSMS 1.3. Refer to “VSAM functions by release level” on page 2.

5.6.1 RLS/KSDS extended addressability
When VSAM RLS support was announced with DFSMS/MVS V1R3, it did not
support VSAM KSDS extended addressability (EA) format. In other words VSAM
RLS component retained the 4 GB architectural limit for the component size
imposed by using the 4-byte field for the relative byte address (RBA) addressing
mechanism. DFSMS/MVS V1R4 removed this restriction by supporting RLS EA
for VSAM KSDSs, and therefore VSAM RLS now supports VSAM KSDSs up to
the current multivolume limit of 59 DASD volumes.

As in VSAM non-RLS extended addressability, a VSAM RLS extended
addressability KSDS must have its data class defined with:

Data Set Name Type =EXT

If Ext =P or R

Extended Addressability =Y

5.6.2 VSAM RLS CF structure duplexing and rebuild
VSAM RLS goes to lost locks state when the CF lock structure is lost and a
system is also lost — a disruptive condition.

This process consists of the lock structure rebuild with all of the active VSAM
RLS instances with the steps of allocating a new structure instance, propagating
the lock data to the new structure, and switching over to using the new structure
instance.

Currently, z/OS supports four types of lock structure rebuild processes. They are

� User-managed rebuild
� User-managed duplexing rebuild
� System-managed rebuild
� System-managed duplexing rebuild

User-managed rebuild
This enhancement to the current user-managed rebuild process will minimize the
possibility of running out of record table space. Prior to this enhancement, if
record space is exhausted, either an 0F4 abend or a record management error
will occur. This enhancement adds a new validation check function during the
278 VSAM Demystified

user-managed rebuild process for the lock structure. When rebuild tries to
change a lock structure and the size of the record table is greater than 50%, this
new function will determine if the new table has enough space for all existing
record table entries, plus enough empty space for future locking processes
(120%). If the answer is no, then the rebuild request is rejected and a new
IGW457I message will be displayed.

System-managed duplexing rebuild
This support is available from z/OS V1R4 DFSMS. The VSAM RLS duplexing
support only applies to the lock structure and not the cache structures.

What is it?
This facility is a hardware-assisted mechanism for VSAM RLS duplexing CF lock
structure data, and provides a robust recovery mechanism for failure scenarios
such as a loss of a CF, or loss of connectivity to a single CF.

� Provides quick recovery from RLS lock structure failure
� Reduces lost lock conditions
� Minimizes running out of record table space
� Eliminates 0F4 abends

How to set it up?
To use the new VSAM RLS system-managed duplexing function the following
tasks are required:

Review CF configuration
Evaluate the CF configuration (storage, links, processor capacity) and make any
necessary configuration changes to accommodate the new VSAM RLS lock
structure instances resulting from system-managed duplexing.

Migrate to z/OS V1 R4 or later
All systems in the sysplex that use this function will need to be upgraded to this
level that supports System-managed duplexing.

Install hardware CFCC level 12 or later
CF Duplexing requires CFCC Level 12 for implementation on IBM ~
zSeries servers. For G5/G6 Servers and the stand alone CF 9672-R06, CF
Duplexing function requires CFCC Level 11.

Attention: When the lock structure is in duplex mode, user command rebuild
requests are rejected. You must use the alter function to change the lock
structure.
 Chapter 5. VSAM Record Level Sharing 279

Format the CFRM couple data set
Format this as system-managed, duplexing-capable, and bring that CFRM
couple data set into use in the sysplex, to enable CFRM for system-managed
duplexing.

Modify the CFRM policy
Modify this to control the sizing, placement (through the CF preference list) and
the DUPLEX parameter indication for the VSAM RLS lock structure, which is
duplexed via system-managed duplexing, and activating this CFRM policy.

5.6.3 RLS CF caching enhancements
This support is available in z/OS V1 R3.

What is it?
There are two RLS caching enhancements, respectively:

� Dynamic cache reassignment

� For the CF structure rebuild process to work, extra space in a CF must be
reserved, if not it fails. Then all I/O requests for those VSAM spheres fail.

� DFSMS dynamic cache reassignment allows the customer to better utilize the
CF resources.

� If the rebuild fails, SMSVSAM Dynamic cache reassignment code examines
each VSAM sphere that is assigned to the failing cache. Those spheres that
are assigned to a storage class that point to 'cache set' where there are more
than one cache structure names are reassigned. The same algorithm used in
the original allocation of the sphere is used. For the VSAM sphere that were
able to be reassigned, all requests continue to work. For the VSAM spheres in
which the reassignment failed, those requests are failed with a reason code
“cache not available”.

� Data CIs larger than 4KB in cache structure. The initial version of SMSVSAM
support did not cache RLS data CI that was greater than 4 KB, for
performance reasons. However, since 9672 G4 machines, due to the faster
CF links and CF CPU, there are performance gains in keeping larger than

Attention: The lock structure (IGWLOCK00) should not be defined in the
CFRM policy as duplexed before all of the VSAM RLS instances on all system
have been upgraded to the level that supports System-Managed duplexing.
(Once the lock structure is duplexed, down-level VSAM RLS instances that do
not provide the support for System-managed duplexing will be unable to
connect to duplexed lock structure).
280 VSAM Demystified

4 KB data CIs in the CF cache structure. With this support you can cache all,
some, or none of the VSAM RLS data in the CF cache structures defined to
SMSVSAM — through the RLSCFCACHE keyword. The VSAM index
structure is ALWAYS cached. The directory entry for a CF data entry also is
always cached, regardless of what option is specified.

How to set it up?
Here are the steps to take.

Migrate to z/OS V1 R3 or later
You must be at this level or higher.

Update SYS1.PARMLIB member IGDSMSxx
There are two new keywords in IGDSMSxx. They are:

� RLS_DynamicCfCacheReassign(YES|NO).

This keyword controls, at the sysplex level, whether RLS dynamic cache
reassignment is active or not.

� RLS_MAXCFFEATURELEVEL({Z|A})keyword

This specifies the method that VSAM RLS should use to determine the size of
the data that is placed in the CF cache structure. You can use the
RLS_MAXCFFEATURELEVEL keyword to limit the connect level when the
sysplex has a mixed level of releases and maintenance. If you do not specify
a value, or if you specify Z, then only VSAM RLS data that has a Control
Interval (CI) value of 4K or less is placed in the CF cache structure. If you
specify A, caching proceeds using the RLSCFCACHE keyword
characteristics that are specified in the SMS data class that is defined for the
VSAM sphere.

RLS_MAXCFFEATURELEVEL is a sysplex wide value. The first system
activated in the sysplex will set the value; all other systems will use the value
set by the first system. Default: Z.

– RLS_MaxCfFeatureLevel(A) indicates that VSAM RLS caching uses the
characteristics specified in the SMS DATACLASS defined for the VSAM
sphere.

– RLS_MaxCfFeatueLevel(B) indicates that DynamicCfCacheReassignment
is installed. This feature is active if the
RLS_DynamicCfCacheReassign(YES) is specified in the active SMS
parmlib member.

– RLS_MaxCfFeatureLevel(AB) indicates that both features may be
activated.
 Chapter 5. VSAM Record Level Sharing 281

Update data class
The new caching characteristics are defined in the DATACLASS SMS construct.
A new field is added to the ISMF DATACLASS construct called RLSCFCACHE.
The values are NONE, UPDATESONLY, and ALL(default).

5.7 RLS performance
Even knowing that the major reason for implementing RLS is availability, in this
topic we discuss the performance considerations caused by such migration, that
is, from non-RLS to RLS mode.

Performance is a matter of subjectivity and relativity. In each performance
evaluation task, we need to have very clear objectives and to what objectives we
should relate the measured numbers. Here in this topic, we have two types of
goals:

� Compare theoretically — although supported by IBM experiences — a
CICSPlex® without RLS data sharing with the same environment but with
RLS. Refer to “CICSPlex RLS performance comparison” on page 299.

� Compare practically (with experiments) batch workload accessing VSAM
clusters in non-RLS and in RLS mode. Refer to “Batch RLS performance
experiments and comparison” on page 300.

Our performance monitor is Resource Measurement Facility together with a hand
full of MVS commands and SMF records reports related to RLS performance.

It is clear that one big difference in these two modes (RLS and non-RLS) is the
use of the coupling facility (CF) by RLS, which implies performance losses and
gains. The losses could be the time the transaction needs to wait for CF link
transport and CFCC processing, for guaranteeing integrity, for example. The
gains could be the use of CF caching capabilities to avoid an I/O operation,
improving throughput.

In this topic we also explain major RMF fields covering RLS and the SMF records
created on the subject.

5.7.1 Factors affecting RLS data sharing performance
Here, we cover all the factors introduced by RLS data sharing, which could affect
the performance of a VSAM I/O request. Some of them are connected to specific
ways of implementing data sharing. After the description of the factor, we
recommend how to improve performance in the factor realm.
282 VSAM Demystified

Speed of the CF hardware and software
RLS data sharing performance is directly affected by the speed of the hardware
associated with the coupling facility (CF), as follows:

� Here is the relationship between the CF and host CPU speeds:

– The faster the CF CPU, the less overhead in the host CPU. This is crystal
clear, host CPU waits less.

– The faster the host CPU, the higher the overhead, because for the time
waiting for the CF CPU, MIPS are not being productively used by the host
CPU.

� Dedicated or shared CF CPUs: Here we admit they are dedicated, as is
strongly recommended in production environments.

� As for the number of CF CPUs in the CF logical partition, two is better than
one.

� The CF type of link, such as IC, ISC or ICB, will effect the rate (MB/sec).

The other factor is the load submitted to the above mentioned hardware, for
example:

� Total demand in the CF and CF links, which may cause high queue time.

� How heavy is the actual RLS request, which may cause high service time.

Refer to “Coupling Facility Usage Summary report” on page 311, and “Coupling
Facility structure activity report” on page 314 to learn how to evaluate the
performance of your CF hardware.

Recommendations
This recommendation is very easy to make. If you see performance problems in
the CF through RMF analysis, buy the faster hardware for this CF:

� Faster and more than one (if needed) dedicated CF CPUs
� Faster links: ICs or ICBs, if possible
� Do not overload the CF and CF links capacity

DASD performance of the SHCDS data sets
The DASD performance of the SHCDS data sets is important, to have a good
general RLS performance. Refer to “Define Sharing Control Data Set (SHCDS)”
on page 253 to get more about the role played by this data set in SMSVSAM.

To be sure that the I/Os towards SHCDS is performing well, go through the
explanations in “Performance scenario using RMF reports” on page 115.
 Chapter 5. VSAM Record Level Sharing 283

Recommendation
Allocate them in faster controllers with lots of cache, small capacity disks, with
high RPM, accessed by FICON channels

CF synchronous and asynchronous requests
A key XES question effecting performance, is what to do with the MVS CPU
when CFCC is processing the request. There are two possibilities:

� With synchronous processing, the MVS CPU is placed in a loop by XES,
waiting for the completion of the CF request. The synchronism referred to
here is between the requiring task (not placed in wait state) and the execution
of the request in the CF. Some observations on this are:

– It is efficient because the requesting CP spins until response is received
from CF, saving overhead of task being undispatched, saving status,
swapping registers, being dispatched again, and so on.

– This can burn MIPS if CF takes a long time to respond.

This should be used for short requests.

� Asynchronous processing: Instead of holding the MVS CPU, XES releases it
once the CF requests have been sent. Here are some observations on this
approach:

– This will consume less CPU time than very long running synch requests.

– This frees up CPU for other work while the request is processed.

– This uses instructions in the dispatcher component because the task must
be undispatched then later re-dispatched.

This should be used for long requests.

Usually the CF requests for the IGWLOCK00 are synchronous.

In z/OS 1.2 the CF Synch/Asynch heuristic algorithm is introduced, where XES
selects the most efficient way (in terms of used machine cycles) of handling each
request. This is based on:

� The current actual synch response times for each CF request type. For
duplexed structures, XES keeps the time from the start of the first operation to
the end of the last one.

� The speed of the CPU that z/OS is running on, which determines the number
of instructions that could be executed while CP spins on synch request.

Recommendations
� Install z/OS 1.2 to have the new CF Synch/Asynch heuristic algorithm.
284 VSAM Demystified

� Learn RMF reports covering synchronous and asynchronous requests, and
refer to “Speed of the CF hardware and software” on page 283, to improve the
performance of Synch/Asynch CF requests. By the way, you cannot influence
the decision between one type and the other.

SMSVSAM buffering and caching
An application program GET can be served by SMSVSAM in three places: local
buffer pools, SYSVSAM CF cache structure, or DASD I/O.

� Local buffer pool: The needed data CI is there and valid. No I/O is necessary.

Each buffer in this buffer pool has the size of a CI. It is possible to have 16
different types of buffer pools varying the CI size, from 2 KB to 32 KB.

These SMSVSAM buffers CI contents are managed by Buffer Management
Facility (BMF) an SMSVSAM component, using a least recently used (LRU)
algorithm. By the way, there is not a sequential look-ahead for any type of RLS
access. LRU keeps in the buffer pool the CIs most referenced, or the best
selection of CIs, as direct access is concerned. The number of buffers in the
buffer pool varies dynamically, it increases when a buffer is needed by an
incoming CI and decreases when a CI is deleted or stolen by the LRU algorithm.
Time driven — the least referenced CIs are stolen by an LRU buffer aging
routine. This routine runs with a dynamic frequency. At a higher frequency more
CIs are stolen, less exact is their measured unreferenced pattern, and more CPU
cycles are spent.

The full LRU algorithm is controlled by the Parmlib member IGDSMSxx, where
the installation sets a goal limit for the local buffer pool size, through the
RLS_MAX_POOL_SIZE keyword (defaults of 100 MB and limit of 1.5 GB). This
parameter when you are migrating to RLS, should have the same magnitude of
the size of the CICS/FOR (LSR and NSR) buffers. Also at IGDSMSxx (LRUTIME
keyword), the installation defines the frequency of the LRU cycle routine.

At every invocation of the LRU cycle routine, it verifies if the local buffer pool size
is:

� Equal or below the goal, then the buffer aging routine is slowed down.

� Over the goal, then the buffer aging routine is accelerated increasing the
stealing of CIs. This state is named accelerated.

� Five times over the goal, or reaches the 1.5 GB limit, BMF energetically starts
stealing (reclaiming) the buffers without waiting for the aging routine. This
state is named reclaimed.

� If the local buffer pool appears as over the goal (status Accelerated or
Reclaimed), you could adapt the goal in Parmlib member IGDSMSxx by
increasing the RLS_MAX_POOL_SIZE value at a price of increasing the use
 Chapter 5. VSAM Record Level Sharing 285

of central storage. If you do not have enough central storage, the option is to
decrease the level of RLS activity. Also, this case guarantees that the CF
cache structure is able to keep the records that overflow from local buffers in
order to avoid DASD I/O.

In conclusion, we say that for direct access, RLS BMF manages its buffers more
efficiently than local shared resources (LSR) pools. Then, the buffer pool hit
ratios are better for the RLS managed buffers than for LSR pools, in direct
accesses.

However, because the local buffer pools managed by BMF does not implement
look ahead along read sequential access, avoid batch sequential RLS
processing. If there is a reading JOB accessing the CICS/RLS spheres, it is
recommended to use SHROPT(2,n) and no RLS mode.

� As for the SYSVSAM cache structure in the CF, it is used when the data CI is
not in local buffer pool or is there but invalid, due to cross invalidation. No I/O
is necessary.

To use the cache structure with data CIs, you may use at data class (DC) the
RLSCFCACHE keyword to control who is going to the cache:

� For the ALL keyword, all data CIs read into or updated in local buffers are
copied in CF cache structure. This is the default.

� For the UPDATESONLY keyword, only data CIs updated in local buffers are
copied in CF cache structure.

� For the NONE keyword, no data CIs are copied to the CF cache structure.
The CF cache structure is only used, through its directory for cross
invalidation.

Note that this keyword is per DC, consequently each cluster can have a different
value.

Before z/OS1.3 DFSMS only data CIs less or equal 4 KB were candidates to be
located in the CF cache structure.

The CF cache structure is also managed by an LRU algorithm, trying to keep the
most referenced CIs. However, there are the DIRECT WEIGHT and
SEQUENTIAL WEIGHT keywords fields, designed to protect some clusters
relatively from others against stealing. Refer to “Define the CF cache structures
names to SMS” on page 260.

To increase the probability of finding the CI in this cache, you may allow big
cache structures, at least the sum of all the local RLS buffers. We recommend a
few cache sets, with each one pointing to only two CF same size structures in
distinct CFs. Refer to “Define CF cache structures” on page 256. It seems that
286 VSAM Demystified

the use of weights is not fully implemented, because all the weights are forced to
the value six.

� DASD device: The data CI is not in the cache structure.

RMF has a set of reports covering this subject. Refer to “RMF and VSAM RLS”
on page 306.

Recommendations
� If the local buffer pool is accelerated or reclaimed, as shown in RMF, increase

RLS_MAX_POOL_SIZE, if you have enough central storage. If you do not
have such storage or increase the size of the cache CF structure or decrease
the RLS load at measured interval. Also decrease the LRU_TIME keyword to
the LRU routine to be invoked more often.

� Avoid batch reading sequentially in RLS mode, there is not look-ahead.
Change the mode, if you want performance and you do not care about read
integrity.

� If READ CF% in RMF is low, increase cache structures size, at least to the
sum of all the local RLS buffers. We recommend a few cache sets, with each
one pointing to only two CF same size structures in distinct CFs.

� Re-visit the value of RLSCFCACHE keyword, which the default is ALL. Maybe
your I/O workload is cache unfriendly for reads. Then, you are polluting the
cache with data that is not used later. Think about changing for
OPDATESONLY.

Control Interval cross invalidation
Buffer coherency must be maintained when sharing data. There are two things
that drive this coherency and they are:

� The SMSVSAM address space must to be updated to reflect that a CI located
in its local buffer was updated by other SMSVSAM, that is, that the CI is no
longer valid.

� There must be a place where any SMSVSAM can find the most current copy
of a CI located in its local buffer pool

To address these problems the following CF logic is implemented; refer to
Figure 5-17.
 Chapter 5. VSAM Record Level Sharing 287

Figure 5-17 Cross invalidation and locks

The numbers below refer to the numbers in the figure:

� 1. Every time a CI enters a local buffer pool, SMSVSAM indicates its interest
on the CI to CFCC. So there are entries in the directory not pointing to a
cache element, but to a specific SMSVSAM. The ratio between the number of
directory entries and cache elements is determined by the first SMSVSAM to
connect to the structure through the IXLCONN macro. The ABC control
interval is in both local buffers.

� 2. A transaction in system 1 is requiring an update to a record located in ABC
control interval. The lock is required by SMSVSAM1 to CFCC and granted.

� 3. SMSVSAM1 verifies that the copy in local buffer pool is valid by inspecting
the HSA valid bit.

� 4. The CI is modified in a local buffer pool, the CI is copied in DASD
(store-through) and optionally in a CF cache element.

� 5. and 6. CFCC is informed by SMSVSAM1 about the change. By searching
the directory, CFCC discovers the other SMSVSAMs that manifested interest
in such CI — in other words, the ones that now have an out of date copy of the

Coupling Links

ABC

HSA

ABC ABC

4

34 7

HSA

Coupling Links

ABC

6

1

SMSVSAM2SMSVSAM1

5

2

1

288 VSAM Demystified

ABC updated control interval. CFCC switches on the invalid bit accordingly,
using IXLVECTR XES service. This action is called a cross invalidation (XI).

� There is an unusual case of XI called directory reclaims XI. It happens when
a directory entry is needed and there is no one available. To reclaim an entry
its previous content is released and the corresponding pair SMSVSAM/CI
affected has the HSA invalid bit set to on. This is not because the copy of the
affected CI is not valid anymore, but just because CFFC is not able to track it.
RMF shows these figures in “Coupling Facility structure activity report” on
page 314.

Later an SMSVSAM2 receives a transaction request, to be filled by the modified
CI. The old copy is still in local buffer pool, but SMSVSAM2 detects the invalid bit
on, using the IXLVECTR local vector service TestLocalCache. We have a cross
invalidation and the SMSVSAM searches by the fresh copy in the CF cache
elements or in DASD. When found, the new copy is brought to local buffer and
made available to the transaction.

Recommendations
The “VSAM RLS Monitor III reports: RLSLRU” on page 306 shows the XI figures.
If these figures are too big (above 10%), you may try to:

� Avoid directory reclaims XIs caused by CF cache directory shortages. Verify if
the APAR OW23008 is applied. It causes SMSVSAM to constantly adjust the
data-to-directory ratio to minimize the number of buffer invalidation due to a
shortage of directory entries. In our experiments, it seems that this function is
not active due to the huge amount (25%) of directory reclaims XI observed in
the RMF report.

� Increase the size of the CF Cache structure to avoid that the directory
reclaims XI cause an I/O DASD operation.

� Decrease the size of local buffer pools, this is trade off between buffer hits and
cross invalidations.

� When using CICSplex dynamic workload balancing, temporarily make
transactions connected to a certain type of data to bias the workload to a
specific system.

True and false contention in lock structures
Usually we have many more records (many millions), in a medium to large data
set, to serialize through global locks, than the number of entries (many
thousands) in the CF structure lock table. The reason for this is the impossibility
of having enormous lock structures in the CF.

The solution is to share the same lock entry with several logical records locks.
Refer to Figure 5-18. A hashing algorithm applied in the Key, RBA, or RRN is
 Chapter 5. VSAM Record Level Sharing 289

used to map a lock associated with the record to a lock entry. When more than
one lock register maps to the same lock table entry (synonyms), there is a false
contention.

In the example, it is a false contention because the lock table entry #2 is held by
an exploiter in SMSVSAM1 due to a logical record 2723 lock. Another exploiter in
SMSVSAM2 requires a logical record 8627 lock. It cannot get the lock because
the common entry is held by the first (false contention). In this case there is a
performance penalty, the second lock requester is suspended until this
SMSVSAM2 determines through XCF conversation (using the XCF group name
IXCLO001) with SMSVSAM1, that there is no real lock contention on the
resource. If the contention is true the requesting task still stays in wait state; if
false it is placed immediately in ready state.

Figure 5-18 Example of two locks synonyms

To avoid such performance degradation due to false contention (should be less
than 0.1% for iGWLOCK00), you might decrease the possibility of synonyms.
This can be done in two ways:

� Decrease the length of each lock table entry, by decreasing MAXSYSTEMS
(parameter used along formatting the Sysplex Couple data set) to a number 7

SET LOCK 2723

2723

1

SMSVSAM 1

HASH2

SET LOCK 86274

HASH5

XCF TALK6

8627

SMSVSAM 2

8627

8623
LR 2

LR 1

XCF

3 6

24

XCF

2
1
0

Lock Table
in CF

HASH
290 VSAM Demystified

or less — if you do not have more than 7 systems in your sysplex. If you have
more than 7, define MAXSYSTEMS as less than 24.

� Increase the size of the lock table. There is a formula to calculate its size:

10M *number_of_systems *lock_entry_size

The the loc_entry_size depends on the MAXSYSTEM value as we saw in the
previous topic:

7 or less: 2 bytes
>= 8 and < 24: 4 bytes
>= 24 and <= 32: 8 bytes

Refer also to OS/390 MVS Parallel Sysplex Configuration, Volume 2: Cookbook,
SG24-2076, for more information on how to derive the size of the structure.

If you are facing real contention (the rule of thumb is no more than 2% of the total
locks requested) maybe you should, if possible, use no ready integrity (NRI)
option in DD card or ACB. It implies that no shared locks are obtained for reads,
meaning that the reader can read before the commit of an updater. This is
sometimes referred to as dirty read, because the reader might see an
uncommitted change made by another transaction. However, the buffer pool
coherency is achieved, even with NRI. Another recommendation is to verify the
existence of long transactions not committing and them holding many locks, they
can flood the CF lock structure.

Refer to “RMF and VSAM RLS” on page 306 and “MVS commands about RLS
performance” on page 320, if you are concerned about lock contention.

Recommendations
If you have more than 0.1% of false contention:

� Decrease the length of each lock table entry.
� Increase the size of the lock table.

If you have more than 2% for real or more than 0.1% for false contention:

� If possible, use NRI.

� Avoid long transactions running with scarce commits.

� Avoid rerunning a JOB applying duplicate updates instead of updating from
the last commit point.

� Avoid backing out changes made by an application error (or bad/invalid
output) in a specific job running in parallel with heavy workload against the
cluster.
 Chapter 5. VSAM Record Level Sharing 291

Serialization at record level
This function has no direct relation with the use of CF, however it is a key
modification in the way VSAM serialize its data. In non-RLS mode, the level of
serialization used by DFSMS lock manager is:

� At sphere level (at OPEN time), using share options.
� At CI level (at GET/PUT time) using intra-address space sharing.

Refer to “VSAM sharing mechanisms” on page 216, for more information.

Now returning to RLS mode, let us compare the pros and cons of serializing a
logical record level with CI level.

The serialization at logical record level (instead at CI level) has the following
important advantage:

� Significantly decreases the real contention due to a higher granularity.

And, here are the disadvantages:

� Increases the number of locks and the associated effort to manage them.

� Due to more locks, the number of false contentions should be higher than if
the serialization would be done at CI level, because more locks are used.

Generally speaking, the serialization at logical record favors the smaller
components.

However, pay attention that the cross invalidation process as described in
“Control Interval cross invalidation” on page 287, is still done at CI level. Then the
following scenario may happen:

Two different logical records in the same CI could be updated at the same time
on two different SMSVSAM (X and Y), and this is good. X updated the first logical
record in a CI holding its lock. The same CI is in the local buffer pool of Y. When
Y tries to update the second logical record (also holding its lock), it detects that
the buffer is now invalid, although the second logical record was not updated by
X. The CI is reread by Y from DASD (or CF). The new CI, containing both
updated records, is now written by Y to the CF and then to DASD, the invalid bit is
set in X.

Please note that a logical record lock is only free at commit time and not at end of
the logical processing.

Recommendations
Read the recommendations of “Control Interval cross invalidation” on page 287,
if you are facing high level of real and false contentions. Do not forget the
possibility of using NRI.
292 VSAM Demystified

Effect of a write dominant I/O workload
Writes are always a source of performance, integrity, and availability problems in
data processing. Nevertheless, because there’s no such thing as a full read-only
environment, let’s explore this some more.

A write dominant I/O workload may cause performance degradation because of
the following reasons:

� Excess of CI cross invalidations; refer to “Control Interval cross invalidation”
on page 287.

� All the random writes against a CI in the local buffer pool are in store-through
mode. This means that the DASD I/O operation is always executed, there is
no option of a defer write (store-in mode). In CICS FOR there is such an
option. On the other hand, the store-through mode favors a faster recovery.

The performance gets worse, because:

– The requesting task waits till the end of the DASD I/O operation.

– If the same CI is updated N times, when in the buffer pool, with the
store-through mode we have N I/O operations; but with defer write we
have just one I/O operation, therefore saving N-1 I/O operations.

� Lots of locks held in exclusive mode (because of the writes), causing more
real contention at logical record level.

Recommendations
� If you have to face lots of DASD I/O writes, then improve the performance of

your volume, such as: allocate the VSAM cluster it in a fast controller with lots
of cache, RAID10 (instead of RAID5), small capacity disks and high RPM
disks. Refer to “Performance scenario using RMF reports” on page 115, to
improve the performance of your DASD I/Os.

� Refer to “Control Interval cross invalidation” on page 287, for
recommendations about how to decrease XIs.

RLS lock structure duplexing
An error in software or hardware may destroy the contents of a CF structure or
can make it inaccessible due to the lack of CF links. IGWLOCK00 is sensitive to
structure failures and its demands, to keep continuous availability, by
implementing one of these features: Failure Isolation or System Managed
Duplexing. Refer to “VSAM RLS CF structure duplexing and rebuild” on
page 278, for more information.

In this topic, we discuss the performance aspects of System Managed (SM)
duplexing the IGWLOCK00 structure.
 Chapter 5. VSAM Record Level Sharing 293

Cost of SM duplexing differs depending on structure type, usage, and the percent
of requests that get duplexed. When duplexing IGWLOCK00 all the writes are
duplexed.

Performance impact of implementing SM duplexing is more likely to be a lack of
capacity in the CF, than a transaction response time (in MVS CPU time
component).

Here is a list of such costs:

� The MVS CPU cost: 3 to 4 times the CPU consumption of a simplex request
(but may save CPU associated with DASD I/O). Refer to “CF access time” on
page 295, to understand how this figure is derived.

� The subchannel cost: 6 to 8 times that of a simplex request (2 subchannels
tied up, each 3-4 times longer than before).

� The link cost: Cannot directly measure, unlikely to be an issue CF CPU cost
— 4 to 5 times that of a simplex request (across both CFs).

All of these assume minimal distance between the CPCs and CFs and between
the two CFs.

There is no additional cost for simplex requests, because your system has the
SM duplexing capability.

Recommendations
� Review the recommendations stated in “Speed of the CF hardware and

software” on page 283, to improve the performance of the CF hardware in
order to absorb the load generated by duplexing.

� If you do not have CF and CF Links capacity for implementing duplex with
acceptable performance, then you may want to implement Failure Isolation
instead.

Recoverable VSAM spheres
Recovery does affect performance due to extra work that needs to be done to
allow a cluster to be recoverable. We strongly recommend, if you do not have the
procedures in place and the recovery products, such as CICS/VR, to implement,
for instance, forward recovery (REDO), there is no point in specifying LOG(ALL).
This option generates the overhead of creating record images for UNDO/REDO
in the forward recovery log, but does not provide the ability to do anything with
such information. Refer to “Recoverable sphere” on page 252 for more
information.
294 VSAM Demystified

Recommendations
Do not declare your VSAM cluster recoverable, if you do not have products to
enforce this recoverability.

Dealing with deadlocks
Deadlocks are a performance and also a problem determination subject. Refer to
3.2.16, “Deadlocks” on page 160. When in CICS RLS, messages start to pop up
telling about transactions time out, one reason could be RLS VSAM deadlocks.

You may try to avoid deadlocks by changing the way programs are written, such
as:

� Avoid to lock more than one logical records concurrently.

� Create a hierarchy of locks. Then, when more than one lock is required, they
need to be required in a pre-determined sequence, as defined by such
hierarchy.

Your installation may activate the deadlock detection routine through the
IGDSMSxx keywords: DEADLOCK_DETECTION(nnnn|15,kkkk|4) and
RLSTMOUT({nnnn|0}).

The default for DEADLOCK_DETECTION is (15,4). You may want to change
these values to (1,1) to minimize the time required to detect a deadlock condition.
Obviously there is a trade off between CPU time spent detecting deadlocks and
the effect that deadlocks are causing to applications. Carefully monitor these
effects in your environment before making changes to the supplied defaults.

Recommendations
� Avoid deadlocks by enforcing the NRI option, or implementing a lock

hierarchy, or never asking for more than one lock concurrently.

� Activate the deadlock detection routine more often, if you are facing several
deadlock situations.

5.7.2 CF access time
Now that we covered the majority of items affecting the RLS data sharing
performance, we introduce a process to measure numerically some of those
overheads.

As we said earlier in this chapter, the use of the CF by SMSVSAM implies in
losses and gains. Here we start accounting the losses in MVS CPU in RLS
caused by the access to the CF in a MIPS scale. Our calculation applies to our
test machine, the 2064-1C7 CEC. You must scale to your processor's “per CPU”
speed. One of the reasons for such a calculation is to help you to implement
 Chapter 5. VSAM Record Level Sharing 295

some CPU Capacity Planning due to migration from CICS/FOR to
CICS/SMSVSAM.

However, before you get concerned about this MVS CPU overhead, we’ll make a
few comments:

� How much of a 0.5 seconds (500,000 microseconds) CICS response time is
spent waiting on the CF? Maybe 500 microseconds (0.1%)?

� Even if you quadruple the CF time component, does anyone notice the extra
1.5 milliseconds?

� Remember that many large CICS customers still use DASD-only logging with
response times around 2000 microseconds (2 millisecond) and still provide
acceptable transaction response times.

The numeric approach has two parts: for synchronous and asynchronous
requests, respectively:

Synchronous requests formula
Refer to “CF synchronous and asynchronous requests” on page 284. Here we
state the rule-of-thumb, that the MVS CPU time overhead for such types of
requests is made:

� Software CPU time which includes the exploiter (SMSVSAM) plus XES. It
varies by structure type and exploiter and follows the rules of thumb:

– Lock: Average 11 microseconds on 2064-1C7
– Cache/List: Average 18 microseconds on 2064-1C7

� Hardware dwell CPU time which includes:

– The time for the MSMG instruction in MVS CPU
– The CF link transmission time (back and forth)
– CFCC processing

This time is reported in RMF CF Activity report as SYNC SERV TIME. Refer
to “Coupling Facility structure activity report” on page 314, to see the report.

Asynchronous requests formula
The MVS CPU time overhead for such requests consists of:

� Software CPU time which includes the exploiter plus XES plus the code to
execute a task switch:

– Any type of structure (cache, list or lock): average 54 microseconds on
2064-1C7

� Hardware dwell CPU time is zero because the it asynchronous and the MVS
CPU is not placed in a loop.
296 VSAM Demystified

Lock contention event software CPU time
There is another type of MVS CPU overhead that occurs when we have lock
contention. To find out if the contention is real or false, VSAM RLS instances talk
through XCF paths. It averages: 360 microseconds on 2064-1C7.

SM Duplexing MVS CPU cost
MVS CPU cost: 3 to 4 times the CPU consumption of a simplex request.

So let’s make the calculation for structure IGWLOCK00 as an example. The
numbers are based in the report shown in Figure 5-22 on page 315.

Example: MVS CPU Time to access IGWLOCK00
Due to the fact that the requests to IGWLOCK00 are synchronous, we use the
numbers shown in “Synchronous requests formula” on page 296. To get the
hardware dwell time and the frequency of access, we look at “Coupling Facility
structure activity report” on page 314, in the SC63 system.

� Software time = 11.0 microseconds.

� Hardware dwell time (SYNC SERV TIME) = 50.4 microseconds.

� Frequency of access = 215.6 locks /second

� IGWLOCK00 structure consumption = 215.6 x (11.0 + 50.4) = 13.23
milliseconds per second of MVS CPU 1C7.

� Lock Contention using XCF = 360 x Contention rate =

360 x 44K/ 1200= 13.20 milliseconds per second of MVS CPU 1C7.

� The RMF interval duration where 44K contentions were found equaled 20
minutes or 1200 seconds.

� Total MVS CPU TIME in IGWLOCK (no duplexing) = 13.23 + 13.20 = 26.43
ms per second of MVS CPU 1C7, that is, 2.6% of one 1C7 CPU.

� Total MVS CPU TIME in IGWLOCK (duplexing) = 26.43 x 3.5 = 92.50 ms
per second of MVS CPU 1C7, that is, 9.25% of one 1C7 CPU. Maybe you can
convert to MIPS if it suits you.

5.7.3 RLS performance gains
Now here’s the good news. The performance gains are coming from data sharing
and the use of CF.
 Chapter 5. VSAM Record Level Sharing 297

Balancing the system through dynamic workload distribution
In the case of CICS/RLS, the major performance objective (besides availability)
is to balance the load between several MVS images sharing the same data and
consequently to provide better overall response time and throughput.

The queuing theory shows that two images at 80% and 20% busy have a much
longer average queue time than two images at 50% busy each. Then, in a
controlled test environment, the VSAM “I/O time” (includes here the buffer and
cache hits and the real I/O) may get worse (bigger) with RLS than without RLS,
due to CF overhead caused by cross invalidation and locking. However, the
caching function saves read access to DASD. Nevertheless, if the results are not
that bad (after tuning) chances are that in a production environment the bottom
line result implies a better performance, due to subsystems balance.

In a batch environment, throughput tends to be better, because a much larger
level of parallelism is obtained with RLS. Before RLS data sharing, to guarantee
integrity, just one updater could open the same cluster at a time. The serialization
was at cluster level. With RLS the serialization is at record level and many
updaters can, at same time, access concurrently the same cluster at different
logical records.

Using the CF cache structure as a buffer
Due to the better load balance of the systems accessing a VSAM cluster in RLS
mode and the inexistence of the FOR bottleneck a major rate of GET/PUT
requests per second is expected. These GET/PUT requests can be served out of
DASD, in local buffers and in the cache. The discussion here is to address
whether or not this large rate causes an increased number of DASD I/Os per
second.

The number of DASD I/Os is dependent on the local buffer hit ratio. The buffer
pool hit ratio is dependent on the type of workload and the read/write ratio.
Remember that each write causes an I/O. To avoid growth in I/Os when adding
systems, you should scale the buffer pool and coupling facility cache size to
maintain a constant hit ratio in the buffer pool, refer to “SMSVSAM buffering and
caching” on page 285. If the cache size is set up correctly for a read load, one
should experience a drop in the DASD I/O rate per transaction improving the
overall performance. If the Coupling Facility cache is sized large enough to avoid
reclaims, the XIs due to updates do not cause an increase in the DASD I/O rate,
because the updated record can still be found in the CF. Because the RLS buffer
manager manages its buffers more efficiently than local shared resource (LSR)
pools, the buffer pool hit ratios are better for the RLS managed buffers than for
LSR pools.
298 VSAM Demystified

5.7.4 CICSPlex RLS performance comparison
The paramount question as far as CICS is concerned is: What will happen with
your transaction response time and throughput (number of transactions per
second) when you migrate from a CICS/ VSAM non-shared environment to a
VSAM RLS?

As a general statement, we may say that running transactions under CICS TS in
CICSPlex (multiple z/OS) accessing VSAM cluster in RLS mode, did not degrade
transaction response time at all. Experiences have shown that response time
remained the same and the total throughput was linear from one image, two
images, three images, that is, it doubled and tripled from one to two and two to
three images. What follows are some theoretical reasons supporting the above
statements:

CICSPlex dynamic workload balance
Balancing the load across AORs located in different z/OS images in a Parallel
Sysplex is beneficial for CICS performance in general. Read “Balancing the
system through dynamic workload distribution” on page 298.

No more CICS function shipping
Let’s review the environment CICSPlex without RLS.

The CICS transactions coming from VTAM are welcomed by a TOR address
space and based in WLM suggestion is sent to an AOR, where the transaction
logic is executed by a program. If such logic requires a VSAM logical record,
through a CICS function shipping mechanism (through XCF, if the FOR is
remote), the request is sent to a FOR address space. FOR is in charge of
accessing non-RLS VSAM spheres on behalf of CICS transactions.

However, function shipping has a price. IBM benchmarks suggest an increase of
about 16% to 20% in the CPU time used by CICSPlex compared with just one
system. This increase is due to function shipping between the AOR and the FOR.

With VSAM RLS such overhead vanishes, due to the fact that AOR passes the
control to SMSVSAM in its own system. So, this gain may counterbalance the
MVS CPU cycles for accessing the CF.

No file owning region bottleneck
Without RLS all the flow of CICS requests to the VSAM cluster is through file
owning region (FOR). This address space is mono task and it can be a
bottleneck, performance wise, and a single point of failure as availability is
concerned. With RLS the FOR is replaced by several SMVSAM address spaces,
 Chapter 5. VSAM Record Level Sharing 299

one per system in the Parallel Sysplex. Then, as you see, RLS addresses both
problems of performance and availability.

Avoiding remote two phase commit
Before SMSVSAM, it was possible for a unit of recovery to be formed by updates
in VSAM data sets, accessed by different CICS FOR address spaces. In this
case the synch point manager (CICS) needs to implement a remote two phase
commit, a lengthy process, causing a transaction response time to increase. With
SMSVSAM all the writes from the same recovery unit maybe executed in the
same SMSVSAM eliminating this performance problem.

Avoiding I/O because of the CF cache structure
The RLS cache structures in the CF, may avoid a large number of read I/O
operations. Refer to “Using the CF cache structure as a buffer” on page 298.

5.7.5 Batch RLS performance experiments and comparison
We made several measurements with batch jobs accessing VSAM clusters in
RLS mode. The hardware and software description of our lab is in “Our test
environment” on page 396. Here, we describe unique aspects related to the RLS
experiments:

� A master file implemented in a KSDS cluster with 2M of logical records,
freespace is (10,20).

� A sequential file with 200 K logical records not sorted by key. Causing 50%
inserts and 50% reads in the master. There are no records with identical keys
on purpose. This workload is clearly what the storage people call a “cache
unfriendly” workload. The reasons for that are:

– There is contention caused by locks not connected to logical records, as
the locks are serializing CI and CA splits.

– And the RLS behavior in a cache unfriendly (no re-visits) workload.

� The logic is to:

– Read a record in the sequential file.

– Randomly, try a key match in the master, with a GET:

• If no match, insert the logical record in the KSDS (50%).

• If it matches, just read the master record and do not update it (50%).

As we said, the keys in the sequential file were prepared to deliver 50% of
matches. Then we have 100 K reads and 100 K insert writes. There are not
update writes.
300 VSAM Demystified

� After execution we have:

– Data component: one extent, about 20800 CI splits and no CA splits

– Index Component: one extent and no splits at all

� At every run the master is re-created again.

Test case description
1. One job in SMB mode processing 200 K records.

2. Two jobs in SMB mode in the same system processing 100 K records each,
with read and write integrity (SHROPT=(1,3)), then one runs serially after the
other.

3. Two jobs in RLS mode, in the same system processing 100 K records each
No RLS tuning.

4. Two jobs in RLS mode, two systems processing 100 K records each. No RLS
tuning.

5. Three jobs in RLS mode, three systems processing 100 K / 3 records each.
No RLS tuning.

6. Three jobs in RLS mode, three systems processing 100 K / 3 records each.
Some RLS performance tuning, including stopping duplex.

In all the described RLS experiences, the IGWLOCK00 is duplexed, with the
exception of run 6. Always, the read integrity (CR option) is used.

Measurements of interest
� Number of EXCPs in the master KSDS cluster: In VSAM this figure is the

same as the number of I/O operations or SSCHs.

� Total connect time in the master KSDS cluster: Less total connect time means
less I/O operations (for direct access) and more efficiency in the executed I/O
(for sequential access).

� Total CPU time: The programs running in the JOBs do not process the data,
so the CPU time (TCB plus SRB) is only for GET/PUT processing.

� Elapsed time: The wall clock time to process all the 200 K records. However,
we do not have a totally controlled environment, and chances are that the
elapsed time may depend on other types of loads of the three logical
partitions.

� In run 5, we capture other RMF metrics to tune RLS and prepare run 6. These
metrics are described in “RMF and VSAM RLS” on page 306. The values we
got are shown in “Tuning run 5 with RLS parameters” on page 304.
 Chapter 5. VSAM Record Level Sharing 301

Table results
These are the numbers we got from the runs.

Table 5-1 Batch RLS results

Comments about runs 1 to 5
Here are some comments explaining the numbers captured for these runs:

� Run 1 was to calibrate run 2. Run 2 is important because when we move to
run 3, we may see the difference caused by a local RLS (just one system).
The difference between the numbers in run 1 and run 2 are meaningless and
we have no further comments.

� Comparing run 3 with run 2, we see:

– Less EXCPs and less connect time. For random access (as ours), this
means that the savings in connect time are caused only by a decrease in
the number of EXCPs. This decrease is caused by better local buffering
(compared with SMB) and the existence of CF caching. However, pay
attention that these gains are only for reads, because all writes in VSAM
RLS forces an I/O operation.

– Huge increase in the CPU time, that is the price we pay for better I/O.
Remember that we do not process the logical record read from master on

Run
Description

Number of
EXCPs

Total Conn
Time (sec)

CPU Time
(sec)

Elapsed Time
(sec)

1. One Job,
one system

280,276 62.518 19.3 204

2. Two Jobs,
one system,
no RLS

283,880 63.285 19.3 208

3. Two Jobs,
one system,
RLS

263,268 58.923 158.9 212 longest

4. Two Jobs,
two systems,
RLS

270,673 60.626 149.1 203 longest

5. Three Jobs
three systems,
RLS

 278,005 80.893 153.1 160 longest

6. Three Jobs,
three systems,
RLS, tuning

270,804 78.281 113.4 145 longest
302 VSAM Demystified

purpose (read and forget mode). So, the CPU time (TCB plus SRB) is only
consumed for the GET/PUT request. In RLS mode, there are more CPU
time per GET/PUT request due to the CF access (refer to “CF access
time” on page 295). This explains the high percentage figure in the CPU
time increase. Do not forget that the IGWLOCK00 structure is duplexed in
run 3, and this feature consumes more CPU time.

– The elapsed time is almost the same. Here we have a conflict between two
forces. One in run 3 due to parallelism and less I/O, and the other in run 2
due to less CPU (however, lots of CPU cycles are available) consumption
and no lock contention. The final result, as elapsed time (an important
metric for IT managers) is a tied game. Maybe some external effects, such
as different external load in each run, may bias such metric. In
comparison, we observe that the longest of the two JOBs is the one with
more insertions (52841 against 47158) causing more delays due to CI
splits. Then, we have a queue effect which makes the comparison a little
unfair.

� Comparing run 4 with run 3, we see:

– More EXCPs and more connect time. This increase is caused by worse
local buffering and worse caching. The major contributor is the Cross
Invalidation (XI) event, around 12% in run 4. In run 3 there are no XIs
because there is just one local buffer pool.

– Little decrease in the CPU time. The cache and the lock structure are
slightly less used. This justifies the observed CPU decrease.

– The elapsed time is almost the same. We may expect a little higher for run
4 due to slightly worse I/O and caching. Maybe some external effects as
different external load in each run may bias such metric. In comparison,
both the longest JOB is the one with more insertions, which makes the
comparison fair.

� Comparing run 5 with run 4, we see:

– More EXCPs and more connect time. This increase is caused by more
unfavorable local buffering. The cache is used a little more than in run 4.
The major contributor for less hits for reads in the local buffer pool is again
the Cross Invalidation (XI) event. It is around 20% in run 5. The higher
level of XIs in run 5 is caused by having three (instead of two) local buffer
pools. Then increasing the chance of XIs.

– Little increase in the CPU time. The cache and the lock structure are
slightly more used. This justifies the observed CPU increase.

– The elapsed time is less than in run 4. We do not have a clear explanation
for such behavior. So, let’s go traditional: maybe some external effects,
such as different loads in each run, may bias such metric.
 Chapter 5. VSAM Record Level Sharing 303

Tuning run 5 with RLS parameters
When running run 5 (three JOBs, three systems, RLS, no tuning), we observe
other RMF measurements, that were not presented in Table 5-1 on page 302:

� BMF LRU algorithm accelerated at 75% of the measurement interval.

� Maximum BMF pool size was around 145 MB, the RLS_MAX_POOL_SIZE is
100 MB (default).

� Average I/O response time per GET/PUT was 0.001 second, including the
requests served in cache and buffers.

� Data reads found in the BMF is 58.0%, index reads 97.0 percent.

� CPU time consumed by BMF to manage the buffers is 387.3 milliseconds.

� Data reads found in the CF is 10.0%, index reads is 2.6 percent.

� Data reads found in DASD is 31.8%, index reads is 0.5 percent.

� DASD device with four static PAV aliases allowing 528 IO/second with an
average response time of 0.8 ms and average connect time of 0.5
millisecond.

� Cross invalidation was 20%, without directory reclaims XI.

� Real lock contention is 4.2% and less than 0.1 false contention in
IGWLOCK00. This contention is not cause by logical records being accessed
by two JOBs at same time (there are no repetition of keys in the sequential
file), so the contention is caused by locks used to serialize splits.

� CF performance is outstanding with no queues at all.

� WLM service class had a current execution velocity of 85%, that is very good.

� CI Splits in all runs around 21K, and no CA splits.

Modifications
� Increase RLS_MAX_POOL_SIZE to 180 MB.

� Increase the size of the cache from 38 MB to 45 MB to improve the
percentage of hits in the cache. We use the command:

SETXCF START,ALTER,STRNM=RLS_CACHE,SIZE=45000

� Stop duplexing through the use of the following command:

SETXCF STOP,RB,DUPLEX,STRNM=IGWLOCK00, KEEP=OLD

� Do not do anything about cross invalidation.

� Do not do anything to decrease the splits, we are only changing the
parameters directly affecting RLS behavior.
304 VSAM Demystified

Modification results
When performing run 6 (three JOBs, three systems, RLS, RLS tuning), we
observe the following aspects in several RMF reports:

� BMF LRU algorithm is not increased.

� Maximum BMF pool size is around 168 MB (it was 145 MB), the
RLS_MAX_POOL_SIZE is 180 MB. No paging is observed.

� Average I/O response time per GET/PUT was 0.001 second, including the
requests served in cache and buffers. The accuracy of the measurement
does not allow comparison with the previous value (also 0.001 second).

� Data reads found in the BMF is 62% (it was 58%), index reads 98% (it was
97%), this is good.

� CPU time consumed by BMF to manage the local buffers is 337.0 ms (it was
387.3 ms).

� Data reads found in the CF is 9.4% (it was 10.0%), index reads 1.7% (it was
2.6%).

� Data reads found in DASD is 28.8% (it was 31.8%), index read is 0.7% (it was
0.5%), this is good.

� DASD device with four static PAV aliases, allowing 451 IO/second (it was 528
IO/second) with an average response time of 0.6 ms (it was 0.8) and average
connect time of 0.3 (it was 0.5 ms).

� Cross invalidation is 20% (it was 20%), without directory reclaims XI.

� Real lock contention is 3.8 (it was 4.2%) and less than 0.1 false contention in
IGWLOCK00.

� CF performance was outstanding with no queues at all.

� WLM service class had a current execution velocity of 87.8% (it was 85%),
that is very good.

� CI Splits in all runs around 21K (it was 21K), and no CA splits.

� Comparing run 6 with run 5, we see:

– Less EXCPs and less connect time. This decrease is caused by better
local buffering. Data reads in the BMF is 62% (it was 58%). Allowing less
I/Os, 451 IO/second (it was 528 IO/second). The cache is used in the
same amount as in run 5, even with a larger cache. It indicates no
contention in the cache. Also remember that all the writes must have an
I/O operation.

– Medium decrease in the CPU time. The major reason for that is the lack of
duplexing. Better buffering only decreases the CPU time in BMF code by
50 ms (387 - 337).
 Chapter 5. VSAM Record Level Sharing 305

– The elapsed time is less because less I/O and less CPU consumption.

Final comments on our experiments
The results show that with a certain security margin, we may state that the
introduction of VSAM RLS will not harm your performance. It may produce, even
deliver, better performance. Compare the results of run 2 and run 6. Discarding
the expected cost of CPU, we have a significant improvement in the elapsed
time. Refer to “CICSPlex RLS performance comparison” on page 299 to be
reassured that the same scenario could happen with CICS.

Using RLS mode in an ESDS organization
Usually the first implementations of RLS mode in customers are done in KSDS
spheres. There are some concerns in exploiting RLS in other VSAM data
organizations such as ESDS, RRDS. It was tested by IBM and works as
described in manuals.

However, there is a performance recommendation for ESDS, to avoid heavy
direct insert rate (at end of the ESDS). Because of integrity reasons, a lock is
held during the I/O operation for inserts. Depending on the rate, we may observe
the building up of a queue. Before planning to access ESDS or RRDS in RLS
mode, we recommend that you refer to APAR OA01932.

5.7.6 RMF and VSAM RLS
Refer to “Resource measurement facility” on page 136 for more information on
this product. There are several RMF reports picturing the VSAM RLS
performance such as Monitor III: RLSLRU, RLSSC and RLSDS. There are also
the traditional CF reports that describe generically the CF structures and their
links. There we look for information about the SYSVSAM structures, such as
IGWLOCK00 and the RLS cache structures.

We now describe each of these reports, stressing the keys aspects towards
performance management of each field.

VSAM RLS Monitor III reports: RLSLRU
The RLSLRU report provides Local Buffer Manager LRU statistics for each
system. The data in this report can help you in adjusting the goal / limit for the
local buffer pool. Before going through this report, which pictured in Figure 5-19
on page 308, refer to 5.1.3, “How does RLS work?” on page 244.

So first, let’s go to the fields in RLSLRU report, that need additional explaining:

� Avg CPU Time: This is the average CPU time spent by BMF LRU processing
during each reporting interval in milliseconds. We guess that this field could
be used for comparison along different RLS workloads. These workloads can
306 VSAM Demystified

be more or less buffer friendly, or to produce more cross invalidation causing
a change in CPU consumption.

� Buffer Size Goal: This is the buffer size goal (bytes) as stated in IGDSMSxx
RLS_MAX_POOL_SIZE. If goal is greater than 1.5 GB, then the word MAX is
displayed.

� Buffer Size High: This is the buffer size actual high value (bytes).
Cursor-sensitive control on a system line displays a pop-up panel with buffer
counts by pool for the selected system. There are sixteen storage pools
(2K, 4K,..., 32K) available. Each one is presented with the low, high and
average number of buffers.

� Accel%: This is the percentage of Buffer Manager LRU cycle routine, when
local buffer pool size is over the goal and buffer aging algorithms were
accelerated.

� Reclaim%: This is the percentage of Buffer Manager LRU cycle routine, when
BMF was five times over the goal and buffer aging algorithms were bypassed
to reclaim buffers.

� BMF Read%: This is the percentage of GET hits in local buffer pool, the CI is
in local buffer pool and valid. Refer to “Control Interval cross invalidation” on
page 287 to understand the meaning of valid. The recommendation here is
around 80% for direct. Less than this, you should evaluate the level of cross
invalidation, if it is OK, maybe we suggest to increase your local buffer pool
maximum size, if have enough virtual storage. If it is not OK refer to the
recommendations displayed in “Control Interval cross invalidation” on
page 287. Chances are that your workloads be cache unfriendly with re-visits
to the same data.

� Cache Read%: This is the percentage of GET hits in the CF cache structure.
Recommended value around 15%, if less maybe to increase the size of the
CF cache structure.

� DASD Read%: This is the percentage of GET I/O requests in DASD.
 Chapter 5. VSAM Record Level Sharing 307

Figure 5-19 RLSLRU report

VSAM RLS Monitor III reports: RLSSC and RLSDS
RLSSC and RLSDS reports show the same fields. The difference is the scope.
RLSSC groups data in storage classes and RLSDS groups it in VSAM data sets
terms. Both reports cover the use of local buffers and CF cache. Refer to “How
does RLS work?” on page 244.

To gather the data about data sets the option VSAMRLS must be set in Monitor
III ERBRMFxx Parmlib member:

VSAMRLS ADD(data set name mask)

DELETE(data set name mask)

This option controls the collection of VSAM RLS activity data. When you specify
VSAMRLS or allow the default value to take effect, activity data is gathered for
VSAM RLS by storage class. In addition, data set masks can be specified to
collect data by VSAM spheres, too. To suppress the gathering of VSAM RLS
data, specify NOVSAMRLS.

 RMF V1R2 VSAM LRU Overview - SANDBOX Line 1 of 3
 Command ===> Scroll ===>
CSR

 Samples: 100 Systems: 3 Date: 03/12/03 Time: 13.33.20 Range: 100
Sec

 MVS Avg CPU - Buffer Size - Accel Reclaim ------ Read -----
 System Time Goal High % % BMF% CF% DASD%

 SC63 13.08 100M 31M 0.0 0.0 33.3 0.4 66.4
 SC64 8.441 100M 23M 0.0 0.0 68.2 0.1 31.6
 SC65 11.95 100M 30M 0.0 0.0 33.6 0.4 66.0
308 VSAM Demystified

Figure 5-20 RLSSDS

The collection of VSAM RLS activity data by VSAM spheres can be controlled by
following sub options:

� ADD: Start collection for all VSAM data sets which are covered by the mask.

� DEL: Stop collection for all VSAM data sets which are covered by the mask.

If by any reason, you stop and start SMSVSAM, then RMF Monitor III Data
gatherer (RMGAT) must be restarted to capture VSAM RLS data again.

These reports provide VSAM RLS activity regarding GET and PUT requests
accessing the local buffers, the CF cache structures and DASD. This data might
help you in answering important questions like:

� Are there problems with Least Recently Used algorithms (LRU) or buffer pool
sizes?

� Are the CF cache structures too small?

So now, let’s go to the fields presented in Figure 5-20 for additional explaining:

� LRU status: This indicates the status of local buffers controlled by BMF.
SMSVSAM, where the LRU algorithm is used. The size of this buffer pool is
dynamically trimmed by SMSVSAM accordingly with installation parameter
RLS_MAX_POOL_SIZE in IGDSMSxx member in Parmlib. Refer to 5.1.3,
“How does RLS work?” on page 244.

 RMF V1R2 VSAM RLS Activity - SANDBOX Line 1 of 7
 Command ===> Scroll ===> CSR

 Samples: 100 Systems: 3 Date: 03/12/03 Time: 13.33.20 Range: 100 Sec

 LRU Status : Good
 Contention % : 0.0
 False Cont % : 0.0

 Sphere/DS Access Resp -------- Read ---------- ------ BMF ------- Write
 Time Rate BMF% CF% DASD% Valid% False Inv% Rate

 MHLRES2.VSAM.RLSEXT
 MHLRES2.VSAM.RLSEXT.DATA
 DIR 0.109 726.6 17.8 0.3 81.9 44.3 55.75 294.0
 SEQ 0.000 0.00 0.0 0.0 0.0 0.0 0.00 0.00
 MHLRES2.VSAM.RLSEXT.INDEX
 DIR 0.002 43.92 68.0 0.0 32.0 78.7 21.21 6.76
 SEQ 0.000 0.00 0.0 0.0 0.0 0.0 0.00 0.00
 Chapter 5. VSAM Record Level Sharing 309

� We have three statuses:

– Good. The local buffer pool size is below its goal on all systems.

– Accelerated. The local buffer pool size is over the goal on at least one
system, and the buffer aging algorithms are accelerated. It means
practically that the buffer pool is loosing its efficiency and the CIs are
existing less time in such buffers. Maybe it is time to think about increasing
the local buffer pool, if you have enough central storage to avoid paging. If
you do not have enough central storage, let’s hope that at the next level of
buffering, the cache structure will do the job of avoiding I/O.

– Reclaimed. The local buffer pool size is over the goal on at least one
system, and the buffer aging algorithms were bypassed to reclaim buffers.
The same as accelerated, but much more dramatic.

� Contention%: This is the percentage of true lock contentions, the percentage
of requests issued by exploiters delayed due to real contention on a lock in
relation to the total number of requests. It does not include false contention.
The recommendation is less than 2.0%. Refer to “Coupling Facility structure
activity report” on page 314, to see other RMF reports showing such
contention.

� False Contention%: This is the percentage of false LOCK contentions, the
percentage of requests issued by exploiters delayed due to false contention
on a lock in relation to the total number of requests. The recommended value
here is around 0.1% (for IGWLOCK00). Refer to “Coupling Facility structure
activity report” on page 314, to see other RMF reports showing such
contention.

� Resp Time: This is average I/O response time of all I/O requests generated by
the line portrayed entity, such as: storage class, data set, system (cache
structure) in seconds. It includes IOSQ time, pending time, disconnect and
connect time.

� Read: This describes the behavior of GET I/O operations. Shows the rate and
the distribution of where the GET is served: local buffer pool, SYSVSAM
cache structure in the CF, or DASD. Follows the sub-headings:

– Rate: This is the average number of logical records read through a GET,
per second.

– BMF%: This is the percentage of GET hits in a local buffer pool, the CI is in
local buffer pool and valid. Refer to “Control Interval cross invalidation” on
page 287 to understand the meaning of valid. Pay attention to the fact that
sometimes the CI is invalid because another logical record (not the one
required) was updated by another SMSVSAM. The recommendation here
is around 80% for direct. If it’s less than this, you should evaluate the level
of cross invalidation. If such a figure is normal, we suggest that you
310 VSAM Demystified

increase your local buffer pool maximum size, if have enough virtual
storage.

– CF%: This is the percentage of GET hits in the CF cache structure. The
recommended value is approximately 15%; if less, increase the size of the
CF cache structure.

– DASD%: This is the percentage of GET I/O requests in DASD.

� BMF:

– VALID%: This is the percentage of BMF GETs hits that were valid. If a
buffer is found in the local cache and is determined to be valid according to
the information in local control blocks, this counts as a BMF valid READ
hit.

– FALSE INV%: This is the percentage of READ requests when the copy in
the BMF local cache was invalid, because the coupling facility has lost
track of the integrity status of the buffer.

� WRITE RATE: This is the total number of BMF PUTs requests per second.

Coupling Facility RMF Post Processor reports
These reports are created by RMF monitor III data gatherer in an SMF record
format. Later these records are processed by the Postprocessor generating the
sysout reports. There are also CF reports online produced by RMF Monitor III
data gatherer and shown under TSO Monitor III data reporter. These reports are
not covered here, because their fields are a repetition of the Post Processor
fields.

The CF Postprocessor reports are generic showing the performance aspects of
all the CFs and all the structures. Here, we only covered the fields and the
examples about RLS structures. The reports are modified on purpose to highlight
such structures only. For a full description of all fields, we recommend reading
OS/390 MVS Parallel Sysplex Capacity Planning, SG24-4680.

Coupling Facility Usage Summary report
This report shows the use of the CF in number of requests, storage and
processor. You can use this section to evaluate the status of all structures and
how the CF as a whole is being utilized. Refer to Figure 5-21.

Structure Summary
The structure summary lists all structures ordered by type and name. For each
structure the status at the end of the RMF data collection interval is presented:

� ACTIVE: Storage is allocated and there is connection to at least one system.
There is also the information about duplexing such as primary (PRIM) or
secondary (SEC).
 Chapter 5. VSAM Record Level Sharing 311

� INACTV: Storage is allocated but there is no connection to any system, these
structures are called persistent. IGWLOCK00 is persistent.

� UNALLOC: The structure was active at some point in time during the interval
and did not exist at the end of the RMF interval.

Figure 5-21 CF Usage Summary report

For each active structure, the section shows the allocated structure size, the total
number of requests (issued by the exploiter to the XES API for the structure), and
the average number of requests/second.

There is also the last four columns in the report. The information in these
columns can be used to validate the size of various types of structures. The
TOT/CUR (total/current) in-use values indicate for each entity described in the
column how many of those are allocated (TOT) and how many are in use (CUR)
at end of the RMF interval, so it is not a high water mark. Some knowledge of the
structure is required to interpret these data.

� Cache structures (as RLS_CACHE)

– DIR ENTRIES informs how many cache directory entries are
allocated/in-use. In the report you may see that the RLS_CACHE directory
is full with 25K entries.

– DATA ELEMENTS informs how many cache elements (data) are
allocated/in-use. Here you can see any mis-proportioned in terms of
entry-to-element ratio (one never fills up but the other does). In the report

 C O U P L I N G F A C I L I T Y A C T I V I T Y
 PAGE 1
 z/OS V1R4 SYSPLEX SANDBOX START 03/15/2003-15.10.00 INTERVAL 000.20.00
 RPT VERSION V1R2 RMF END 03/15/2003-15.30.00 CYCLE 01.000 SECONDS

 --
 COUPLING FACILITY NAME = CF02
 TOTAL SAMPLES(AVG) = 599 (MAX) = 600 (MIN) = 599
 --
 COUPLING FACILITY USAGE SUMMARY
 --
 STRUCTURE SUMMARY
 --

 % OF % OF AVG LST/DIR DATA LOCK DIR REC/
 STRUCTURE ALLOC CF # ALL REQ/ ENTRIES ELEMENTS ENTRIES DIR REC
 TYPE NAME STATUS CHG SIZE STORAGE REQ REQ SEC TOT/CUR TOT/CUR TOT/CUR XI'S

 LOCK IGWLOCK00 ACTIVE 14M 1.5 767562 32.7 639.63 36K 0 2097K N/A
 SEC 2 0 85 N/A

 CACHE RLS_CACHE ACTIVE X 10M 1.0 1499K 63.8 1249.1 25K 778 N/A 254K
 25K 393 N/A 254K
 PROCESSOR SUMMARY
 --

 COUPLING FACILITY 2064 MODEL 1C7 CFLEVEL 12

 AVERAGE CF UTILIZATION (% BUSY) 3.7 LOGICAL PROCESSORS: DEFINED 2 EFFECTIVE 2.0
312 VSAM Demystified

you may see that the RLS_CACHE has 778 elements allocated and 393
used.

– The DIR RECLAIMS can be used as an indicator whether the directory of
a cache structure is over-committed. Whenever a shortage of directory
entries occurs, the CF reclaims in-use directory entries associated with
unchanged data. These reclaimed items are used to satisfy new requests
for directory entries by the database manager. All users of the data item
represented by the directory entry must be notified that their copy of the
data item is invalid. When the database manager needs access to the now
invalidated data item, the item must be reread from DASD and registered
with the CF.

Avoid Directory Reclaims, this activity results in increased I/O activity to the
cluster to reacquire a referenced data item. To reacquire data items and to
re-register them to the CF may result in increased CPU utilization and
prolonged transaction response times whenever a read miss occurs in the
local buffer pool.

Directory reclaims can be eliminated by increasing the number of directory
entries for a particular structure. This can be accomplished by:

– Increasing the size of the structure. For structures as IGWLOCK00 with
data elements and directory entries, both increases in the ratio are
specified by SMSVSAM.

– Changing the proportion of the structure. Some cache structure exploiters
allow the installation to specify the ratio of directory elements to data
elements (DB2, IMS). IGWLOCK00 does not have this capability, it is said
that it constantly adjusts the data-to-directory ratio to minimize the number
of buffer invalidation.

� Lock structures (IGWLOCK00)

LST ENTRIES informs how many lock lists (point to the lock data) are
allocated/in-use. In the report you may see that the IGWLOCK00 is almost
totally empty with 36K allocated and only 2 used.

LOCK ENTRIES contains record data entries. In the report you may see that
the IGWLOCK00 has 2097K record data allocated and only 85 in use.

However, the critical data about lock structures you may find at the FALSE
CONTENTION data for the lock structure in “Coupling Facility structure
activity report” on page 314.

Processor Summary
The processor summary section shows the CF model and version.

Average CF Utilization: This indicates the real CP utilization (discarding the
CFCC ethernal loop effect) of the LP that hosts the CF.
 Chapter 5. VSAM Record Level Sharing 313

Logical processors:

� Defined: How many logical processors are defined to this CF.

� Effective: Number of effective available logical processors in a shared
environment. CFCC measures the time of real command execution as well as
the time waiting for work. The reported value shows the ratio between the
LPAR dispatch time (CFCC execute and loop time) and the RMF interval
length.

Coupling Facility structure activity report
The structure activity report in Figure on page 314 presents, for all structures:

� In the REQUESTS columns, the number of synchronous (SYNC),
asynchronous (ASYNC) and changed (CHNGD) requests (refer to “CF
synchronous and asynchronous requests” on page 284) and the average
service times and standard deviation for these requests (SERV TIME(MIC)).
The CHNGD line applies to the synch requests changed to asynch because
the subchannel was busy.

The service times of approximately 50 microseconds shown in the report
indicates a fast CF hardware.

� In the DELAYED REQUESTS columns, the number requests that were
delayed due to the following conditions:

– NO SCH: Subchannel contention. The number of asynchronous requests
that were delayed due to subchannel busy conditions.

– PR WT: Peer subchannel wait contention. Applies to duplexed requests,
which always require two subchannels. Number of requests a subchannel
for the operation targeted to the peer (secondary) structure was not
available. Only in the primary structure. Always about 100% for secondary
monitor delay times.

– PR CMP: Waiting-for-peer-completion contention. Applies to duplexed
requests, which always require two subchannels. Number of requests that
one of the two duplexed operations has completed, but the completed
subchannel remains unavailable for use until the peer operation
completes. It shows disparity in response times of CFs.

– DUMP: Waiting for the DUMP structure serialization. The contents of the
other are dumped in this structure, to reduce the serialization time of the
structure being dumped.

The /DEL field indicates the average delay time for each delayed request, and
/ALL the average delay time taking in consideration all the requests (including the
ones which do not suffer delay).
314 VSAM Demystified

The EXTERNAL REQUEST CONTENTIONS gives information on lock
contention for serialized list and lock structures, as well as data access statistics
for cache structures. A discussion for the SMSVSAM structures follows:

Figure 5-22 CF Structure Activity report (IGWLOCK00)

Lock Structures for External Requests Contentions
RMF reports in REQ TOTAL, the number of requests issued by SMSVSAM to the
XES API for the IGWLOCK00 structure, and in REQ DEFERRED the number of
requests deferred due to contention. REQ TOTAL must be numerically close to #
REQ in the same report, the difference is explained by the way XES account
requests for unlocking.

A request can be deferred due to:

� True lock contention, measured by (CONT - FALSE CONT)

� False lock contention measured by FALSE CONT

� XES internal processing delays - if REQ DEFERRED is equal to CONT, there
is no such type of delay.

 C O U P L I N G F A C I L I T Y A C T I V I T Y
 PAGE 13
 z/OS V1R4 SYSPLEX SANDBOX START 03/15/2003-15.10.00 INTERVAL 000.20.00
 RPT VERSION V1R2 RMF END 03/15/2003-15.30.00 CYCLE 01.000 SECONDS

 --
 COUPLING FACILITY NAME = CF01
 --
 COUPLING FACILITY STRUCTURE ACTIVITY
 --

 STRUCTURE NAME = IGWLOCK00 TYPE = LOCK STATUS = ACTIVE PRIMARY
 # REQ -------------- REQUESTS ------------- -------------- DELAYED REQUESTS -------------
 SYSTEM TOTAL # % OF -SERV TIME(MIC)- REASON # % OF ---- AVG TIME(MIC) ----- EXTERNAL REQUEST
 NAME AVG/SEC REQ ALL AVG STD_DEV REQ REQ /DEL STD_DEV /ALL CONTENTIONS

 SC63 259K SYNC 259K 33.4 50.4 123.1 NO SCH 0 0.0 0.0 0.0 0.0 REQ TOTAL 249K
 215.8 ASYNC 252 0.0 152.7 144.6 PR WT 256K 99.0 3.8 5.3 3.8 REQ DEFERRED 44K
 CHNGD 0 0.0 INCLUDED IN ASYNC PR CMP 150K 57.9 6.5 22.3 3.8 -CONT 44K
 -FALSE CONT 1439

 SC64 257K SYNC 257K 33.1 51.0 126.5 NO SCH 0 0.0 0.0 0.0 0.0 REQ TOTAL 250K
 214.1 ASYNC 249 0.0 446.6 525.8 PR WT 255K 99.1 3.7 4.7 3.7 REQ DEFERRED 46K
 CHNGD 0 0.0 INCLUDED IN ASYNC PR CMP 149K 57.9 6.7 23.7 3.9 -CONT 46K
 -FALSE CONT 1869

 SC65 259K SYNC 259K 33.4 49.6 115.9 NO SCH 0 0.0 0.0 0.0 0.0 REQ TOTAL 249K
 215.8 ASYNC 251 0.0 236.1 154.0 PR WT 256K 99.0 3.9 29.7 3.9 REQ DEFERRED 45K
 CHNGD 0 0.0 INCLUDED IN ASYNC PR CMP 148K 57.2 6.5 19.3 3.7 -CONT 45K
 -FALSE CONT 1594

 --
 TOTAL 775K SYNC 774K 100 50.3 121.9 NO SCH 0 0.0 0.0 0.0 0.0 REQ TOTAL 749K
 645.8 ASYNC 752 0.1 277.8 348.5 PR WT 768K 99.0 3.8 17.6 3.8 REQ DEFERRED 136K
 CHNGD 0 0.0 PR CMP 447K 57.7 6.6 21.9 3.8 -CONT 135K
 -FALSE CONT 4902
 Chapter 5. VSAM Record Level Sharing 315

As a result of lock contention you may see increased XCF activity caused by
SMSVSAMs negotiating the lock status.

IGWLOCK00 shows 18% (135/749) for true lock contention. This is too much; the
rule is 2 percent. True contention is application dependent; therefore, it is
necessary to identify the workload using the lock structure. For example,
long-running batch jobs that do not commit the locks can cause high true
contention on lock structures.

The false lock contention is a little bit more than 1% (4/268) of the deferred
requests, but the recommended value for IGWLOCK00 is 0.1 percent. This true
contention should be further investigated. Refer to “True and false contention in
lock structures” on page 289.

Cache Structures for Data Access
For this analysis, in Figure 5-23 on page 317, review the data about the
RLS_CACHE structure.

By the way, the service time is approximately 20 microseconds for this structure,
which indicates a fast CF hardware.

DATA ACCESS statistics for cache structures are acquired from counters in the
CF; they cannot be broken down into individual systems. Only SMSVSAM knows
how efficiently the local buffer and cache structure are being used. Depending on
the cache structure implementation, one or more counts can be zero.

� READS and WRITES indicate how often the CFCC returned data to
SMSVSAM (read) and how often SMSVSAM placed changed data into the
RLS_CACHE structure. If you observe a high number of WRITES and a small
number of READS (as our case), it means that the efficiency of the cache is
low and something needs to be done. Read “SMSVSAM buffering and
caching” on page 285.

� CASTOUTS is a count of the number of times an explorer (demanded by
CFCC) retrieves a changed data entry, writes the data to DASD causing the
changed attribute to be reset to unchanged in the structure. This happens
when the structure occupancy reaches a CFCC internal threshold. As
SMSVSAM uses a store-through algorithm no DASD castouts are needed to
make room in the structure.

� XIs shows the number of times a data item residing in a local buffer pool was
marked invalid by the CF during the RMF interval. The counter reflects the
amount of data sharing among the users of the cache structure and the
amount of write/update activity against the databases. Refer to “Control
Interval cross invalidation” on page 287.
316 VSAM Demystified

Figure 5-23 CF Structure Activity report (RLS_CACHE)

Subchannel Activity report
This report is presented in Figure 5-24. Before we start, here is a recapitulization
of CF hardware.

A CF request is first processed by XES, then transferred to the CF, if there is a
free link, processed by a CF CP, and sent back to OS/390 via the CF link. This
report discusses the possible delays for those requests.

Each CF link in peer mode has seven subchannels, and seven buffers, per each
image that it is serving (MIF). Subchannels are busy from the time MVS sends
the request until the time MVS processes the response. Links are only busy for
the time it takes for the data to travel between CPCs.

CF Links do not support CPMF, so there is no reporting anywhere of actual CF
link utilization. Actual link utilization is rarely an issue.

The count used to build this report are not available on a per structure basis.
Some of the fields have the same meaning as the ones found in the report shown
in Figure 5-23. Here, we only mention the fields with a more complete
comprehension:

� PTH BUSY: Measures the number of times that a synchronous request gets a
free subchannel but encounters all path busy condition. This situation can
occur because the CF link is shared (MIF) between several z/OS images. The
request “spins” until the link becomes available. If this figure is far from zero,
you should dedicate the CF link to the LP. Our number is zero.

STRUCTURE NAME = RLS_CACHE TYPE = CACHE STATUS = ACTIVE
 # REQ -------------- REQUESTS ------------- -------------- DELAYED REQUESTS -------------
 SYSTEM TOTAL # % OF -SERV TIME(MIC)- REASON # % OF ---- AVG TIME(MIC) -----
 NAME AVG/SEC REQ ALL AVG STD_DEV REQ REQ /DEL STD_DEV /ALL

 SC63 527K SYNC 527K 35.1 21.7 135.5 NO SCH 0 0.0 0.0 0.0 0.0
 439.0 ASYNC 0 0.0 0.0 0.0 PR WT 0 0.0 0.0 0.0 0.0
 CHNGD 0 0.0 INCLUDED IN ASYNC PR CMP 0 0.0 0.0 0.0 0.0
 DUMP 0 0.0 0.0 0.0 0.0

 SC64 535K SYNC 535K 35.7 21.6 123.0 NO SCH 0 0.0 0.0 0.0 0.0
 445.7 ASYNC 0 0.0 0.0 0.0 PR WT 0 0.0 0.0 0.0 0.0
 CHNGD 0 0.0 INCLUDED IN ASYNC PR CMP 0 0.0 0.0 0.0 0.0
 DUMP 0 0.0 0.0 0.0 0.0
 SC65 437K SYNC 437K 29.2 21.4 102.7 NO SCH 0 0.0 0.0 0.0 0.0
 364.4 ASYNC 250 0.0 411.0 342.9 PR WT 0 0.0 0.0 0.0 0.0
 CHNGD 0 0.0 INCLUDED IN ASYNC PR CMP 0 0.0 0.0 0.0 0.0
 DUMP 0 0.0 0.0 0.0 0.0

 --
 TOTAL 1499K SYNC 1499K 100 21.5 122.2 NO SCH 0 0.0 0.0 0.0 0.0 -- DATA ACCESS ---
 1249 ASYNC 250 0.0 411.0 342.9 PR WT 0 0.0 0.0 0.0 0.0 READS 79246
 CHNGD 0 0.0 PR CMP 0 0.0 0.0 0.0 0.0 WRITES 572353
 DUMP 0 0.0 0.0 0.0 0.0 CASTOUTS 0
1
 Chapter 5. VSAM Record Level Sharing 317

� DELAYED REQUESTS: These columns have the same meaning of the CF
Structure report, but organized by the type of the structures.

Figure 5-24 Subchannel Activity report

CF to CF Activity report
This report is presented in Figure 5-25.

This report is introduced because of SM duplexing. In such type of duplexing
there is a conversation between the two CFs. The fields pictured in the report
show details of the conversation. All of them are already covered in this topic in
other reports.

 C O U P L I N G F A C I L I T Y A C T I V I T Y
 PAGE 11
 z/OS V1R4 SYSPLEX SANDBOX START 03/15/2003-15.10.00 INTERVAL 000.20.00
 RPT VERSION V1R2 RMF END 03/15/2003-15.30.00 CYCLE 01.000 SECONDS

 --
 COUPLING FACILITY NAME = CF02
 --
 SUBCHANNEL ACTIVITY
 --
 # REQ ----------- REQUESTS ----------- ------------------ DELAYED REQUESTS --------------
 SYSTEM TOTAL -- CF LINKS -- PTH # -SERVICE TIME(MIC)- # % OF ------ AVG TIME(MIC) ------
 NAME AVG/SEC TYPE GEN USE BUSY REQ AVG STD_DEV REQ REQ /DEL STD_DEV /ALL

 SC63 814343 ICP 2 2 0 SYNC 783206 32.9 132.6 LIST/CACHE 0 0.0 0.0 0.0 0.0
 678.6 SUBCH 28 14 ASYNC 22124 306.4 415.3 LOCK 0 0.0 0.0 0.0 0.0
 CHANGED 0 INCLUDED IN ASYNC TOTAL 0 0.0
 UNSUCC 0 0.0 0.0
 SC64 821174 ICP 2 2 0 SYNC 789697 32.9 125.6 LIST/CACHE 0 0.0 0.0 0.0 0.0
 684.3 SUBCH 28 14 ASYNC 21817 232.8 435.0 LOCK 0 0.0 0.0 0.0 0.0
 CHANGED 0 INCLUDED IN ASYNC TOTAL 0 0.0
 UNSUCC 0 0.0 0.0
 SC65 741811 ICP 2 2 0 SYNC 693791 33.8 109.2 LIST/CACHE 0 0.0 0.0 0.0 0.0
 618.2 SUBCH 28 14 ASYNC 37460 161.3 313.0 LOCK 0 0.0 0.0 0.0 0.0
 CHANGED 0 INCLUDED IN ASYNC TOTAL 0 0.0
 UNSUCC 0 0.0 0.0
318 VSAM Demystified

Figure 5-25 CF to CF report

XCF Activity Report (XCF Usage by Member)
This report shows the XCF activity caused by SMSVSAM. The majority of this
activity is caused by the conversation among SMSVSAMs to verify if a lock
contention is true or false. The name of the group used by SYSVSAM is
IXCLOxxx. We have the impression that the number in the reports do not need
further explanation. For example, the SMSVSAM running in SC63 sends 11890
messages to SMSVSAM running in SC64 (both in IXCLO001 group). See
Figure 5-26.

 C O U P L I N G F A C I L I T Y A C T I V I T Y
 PAGE 12
 z/OS V1R4 SYSPLEX SANDBOX START 03/15/2003-15.10.00 INTERVAL 000.20.00
 RPT VERSION V1R2 RMF END 03/15/2003-15.30.00 CYCLE 01.000 SECONDS

 --
 COUPLING FACILITY NAME = CF02
 --
 CF TO CF ACTIVITY
 --
 # REQ ----------- REQUESTS ----------- -------------- DELAYED REQUESTS --------------
 PEER TOTAL -- CF LINKS -- # -SERVICE TIME(MIC)- # % OF ------ AVG TIME(MIC) ------
 CF AVG/SEC TYPE USE REQ AVG STD_DEV REQ REQ /DEL STD_DEV /ALL

 CF01 1536K ICP 2 SYNC 1536K 2.1 1.4 SYNC 0 0.0 0.0 0.0 0.0
 1279.8

 CF02 0 ICP 2 SYNC 0 0.0 0.0 SYNC 0 0.0 0.0 0.0 0.0
 0.0
 Chapter 5. VSAM Record Level Sharing 319

Figure 5-26 XCF Activity report

5.7.7 MVS commands about RLS performance
There are several commands covering RLS performance aspects. The most
important one is the following:

D SMS,CFLS
This command shows details about lock contention in RLS locks. Refer to its
output in Figure 5-27.

There is one line per each time interval where the data is averaged.

� LockRate: The number of locks required per second (shared and exclusive)

� ContRate: % of lock requests globally managed in the CF, if you are running
your RLS sphere in just one system, this number is zero.

� FContRate: % of lock requests falsely globally managed. It indicates the
percentage of false contention in the IGWLOCK00 structure

� WaitQLen: The average of the total number of waiters for any lock. We should
expect this field to increase when LockRate increases passing from a larger
period of observation to a small period (1 hour to 1 minute, for example). If
WaitQueue increases just by itself, it indicates a performance problem.

 X C F A C T I V I T Y
 PAGE 3
 z/OS V1R4 SYSTEM ID SC63 START 03/17/2003-18.30.00 INTERVAL 000.10.00
 RPT VERSION V1R2 RMF END 03/17/2003-18.40.00 CYCLE 1.000 SECONDS
-
 XCF USAGE BY MEMBER
 --
 MEMBERS COMMUNICATING WITH SC63 MEMBERS ON SC63
 --- ---
 REQ REQ
 FROM TO REQ REQ
 GROUP MEMBER SYSTEM SC63 SC63 GROUP MEMBER OUT IN
IXCLO001 M166 SC64 11,890 11,960 IXCLO001 M167 31,872 31,897
 M168 SC65 11,493 11,448 ---------- ----------
 ---------- ---------- TOTAL 31,872 31,897
 TOTAL 23,383 23,408
 IXCLO004 M759 SC64 80 63 IXCLO004 M760 185 195
 M761 SC65 46 73 ---------- ----------
 ---------- ---------- TOTAL 185 195
 TOTAL 126 136
 IXCLO005 M193 SC64 0 0 IXCLO005 M194 0 0
 M195 SC65 0 0 ---------- ----------
 ---------- ---------- TOTAL 0
0
 TOTAL 0 0
 IXCLO026 M132 SC64 0 0 IXCLO026 M133 0 0
 ---------- ---------- ---------- ----------
 TOTAL 0 0 TOTAL 0
320 VSAM Demystified

Figure 5-27 D SMS, CFLS command output

5.7.8 SMF records covering VSAM RLS
There are two SMF records covering VSAM RLS statistical performance data:
SMF record type 42 and 64. Here we just describe the fields associated with
VSAM RLS. Refer to “SMF record types related to VSAM data sets” on page 194
for additional information. Through TDS (grandson of SLR) product you can
create graphical reports relating the SMF reported information. Refer to “Tivoli
Decision Support (TDS)” on page 137.

SMF record 42
This record can be created on a timed interval or whenever the SMF timer ends.
You can specify SMF_TIME in IGDSMSxx to synchronize SMF type 42 data with
SMF and RMF data intervals. SMF record type 42 has many subtypes, some of
them have RLS cache structure statistics. This data includes information for each
system and a sysplex-wide summary:

� Subtype 15 collects data about storage class response time.

� Subtype 16 collects data about data set response time.

� Subtype 17 collects data about coupling facility lock structure usage.

� Subtype 18 collects data about coupling facility cache partition usage.

Because data is collected across the sysplex, it is unnecessary to merge SMF
records from all the systems in the sysplex.

System Interval LockRate ContRate FContRate WaitQLen
MZ1A 1 Minute 1569.1 0.000 0.000 246.30
MZ1A 1 Hour 1358.8 0.000 0.000 30.38
MZ1A 8 Hour 887.0 0.000 0.000 7.81
MZ1A 1 Day 717.3 0.000 0.000 8.47
(03) 1 Minute 523.0 0.000 0.000 82.10
(03) 1 Hour 452.9 0.000 0.000 10.13
(03) 8 Hour 295.7 0.000 0.000 2.60
(03) 1 Day 239.1 0.000 0.000 2.82
***************** LEGEND ******************
LockRate = number of lock requests per second
CONTRATE = % of lock requests globally managed
00 FCONTRATE = % of lock requests falsely globally managed
WaitQLen = Average number of requests waiting for locks
 Chapter 5. VSAM Record Level Sharing 321

SMF record 64
SMF writes a record type 64 when a cluster is closed or processed by EOV. SMF
writes one record for each component in the cluster. SMF record type 64 has no
subtypes. New sections were added to give CF cache information and some
fields were modified to reflect RLS use of the cluster or component. Field
SMF64RLS tells you if the VSAM cluster or component was opened for RLS.
Refer to Appendix A, “Sample code” on page 363, where you will find a source
code to read the SMF 64 selecting the RLS information only. The following report
is produced by such code.

Figure 5-28 Output from SMF64

For more detailed information about SMF records, refer to z/OS MVS System
Management Facilities (SMF), SA22-7630.

1 VSAM RLS - CF STRUCTURE STATISTICS SINCE LAST OPEN

 SYSID JOBNAME START DT/TIME DDNAME DATA SET NAME

 SC63 MHLSC63 03071 12:03:11 VSAMRLSU MHLRES2.VSAM.RLSEXT.DATA
 LOCAL BP HIT: 51988 CF CACHE HIT: 20831 I/O DASD: 0
 INS: 32799 DEL: 0 UPDT: 32694 READ: 32781 CI-SPLT: 233 CA-SPLT: 0

 SC64 MHLSC64 03071 11:29:38 VSAMRLSU MHLRES2.VSAM.RLSEXT
 LOCAL BP HIT: 368 CF CACHE HIT: 14 I/O DASD: 0
 INS: 14 DEL: 0 UPDT: 0 READ: 0 CI-SPLT: 0 CA-SPLT: 0

 SC64 MHLSC64 03071 12:03:11 VSAMRLSU MHLRES2.VSAM.RLSEXT.DATA
 LOCAL BP HIT: 46933 CF CACHE HIT: 20162 I/O DASD: 0
 INS: 32427 DEL: 0 UPDT: 22640 READ: 22742 CI-SPLT: 230 CA-SPLT: 0

 SC65 MHLSC65 03071 12:03:11 VSAMRLSU MHLRES2.VSAM.RLSEXT.DATA
 LOCAL BP HIT: 66836 CF CACHE HIT: 20998 I/O DASD: 0
 INS: 33348 DEL: 0 UPDT: 33246 READ: 33384 CI-SPLT: 235 CA-SPLT: 1

 SC63 MHLSC63 03071 13:03:19 VSAMRLSU MHLRES2.VSAM.RLSEXT.DATA
 LOCAL BP HIT: 52135 CF CACHE HIT: 20529 I/O DASD: 0
 INS: 32436 DEL: 0 UPDT: 32341 READ: 32429 CI-SPLT: 229 CA-SPLT: 0

 SC63 MHLSC63 03071 13:33:15 VSAMRLSU MHLRES2.VSAM.RLSEXT.DATA
 LOCAL BP HIT: 52172 CF CACHE HIT: 20462 I/O DASD: 0
 INS: 32419 DEL: 0 UPDT: 32341 READ: 32411 CI-SPLT: 228 CA-SPLT: 0

 SC64 MHLSC64 03071 13:03:19 VSAMRLSU MHLRES2.VSAM.RLSEXT.DATA
 LOCAL BP HIT: 51012 CF CACHE HIT: 20576 I/O DASD: 0
 INS: 32783 DEL: 0 UPDT: 22906 READ: 23004 CI-SPLT: 233 CA-SPLT: 0

 SC64 MHLSC64 03071 13:33:15 VSAMRLSU MHLRES2.VSAM.RLSEXT.DATA
 LOCAL BP HIT: 49596 CF CACHE HIT: 20474 I/O DASD: 0
 INS: 32679 DEL: 0 UPDT: 22826 READ: 22922 CI-SPLT: 231 CA-SPLT: 0

 SC65 MHLSC65 03071 13:33:15 VSAMRLSU MHLRES2.VSAM.RLSEXT.DATA
 LOCAL BP HIT: 61560 CF CACHE HIT: 21085 I/O DASD: 0
 INS: 33270 DEL: 0 UPDT: 33199 READ: 33337 CI-SPLT: 237 CA-SPLT: 0
322 VSAM Demystified

Chapter 6. DFSMStvs

In this chapter we cover DFSMStvs. Note that there is an IBM Redbook available
titled, DFSMStvs: Overview and Planning Guide, SG24-5741. We do not intend
to duplicate the material covered in that publication but rather, document our
hands-on experiences with TVS.

The topics cover:

� TVS introduction

� Implementing TVS

� Exploiters of TVS

� Changes to system commands, JCL, parmilb member IGDSMSxx

� TVS problem determination and recovery

6

© Copyright IBM Corp. 2001, 2003. All rights reserved. 323

6.1 Introducing DFSMStvs
In this chapter we look briefly at the recent enhancements to VSAM and show
how DFSMStvs is a natural extension to the functions provided by VSAM Record
Level Sharing.

The key functions in DFSMStvs are that VSAM will provide locking, two-phase
commit, backout, and logging facilities that allow multiple batch update jobs to
run concurrently with CICS access to the same data sets while maintaining
integrity and recoverability.

We also introduce some of the terms that are used throughout this book.

6.2 Why DFSMStvs?
In the past, it was often acceptable for a CICS system to be available during
normal daytime business hours, perhaps for a total of twelve hours. This left
plenty of time for the CICS system or application to be shut down and for
supporting batch work to be run. There was no requirement to make business
data available on the Internet.

CICS typically is active and then shut down in preparation for running batch work
for some period of time each day. As soon as CICS has stopped, backups are
taken of key data sets as a point of recovery. Then, batch jobs can be scheduled
to run. If we have several jobs that update the same data set, they will run
sequentially, because they could not share the data set for update. After the
batch updates are complete, there may be a job to read the updated data and
produce reports. Probably, another backup will be done at this stage. When this
is complete, CICS can be restarted and will be active again. DFSMStvs allows us
to extend the CICS window of availability.

6.2.1 How to extend CICS availability
There is increasing pressure to extend the availability of CICS systems. This is
because of the need for better customer service which in turn requires longer
service hours, or because 24 hours per day Internet access to core business
applications is desirable to improve competitiveness, extend the range of
customers served, or reduce costs.

You will probably start to use DFSMStvs so that you can meet new or changing
business objectives. These objectives might include:

� Extending service hours for automated teller machines
� Providing kiosk access to your applications for your customers
324 VSAM Demystified

� Linking your applications with your suppliers or customers
� Web-enabling applications for direct customer use
� Allowing batch reruns to be done during the online day

In each case, there will be new pressures on availability of your systems. One
consequence of the need for greater availability will be that you cannot afford the
CICS down-time caused by your existing batch window. The actions that you will
need to take will depend on whether you can still tolerate a batch window
(although it will be a shorter window) or whether you must aim for continuous
availability: 24 hours a day, 7 days a week.

6.2.2 Reducing the batch window
There are several techniques to reduce the batch window, but each has
drawbacks.

You can use the External CICS Interface (EXCI), which allows a non-CICS
application program to call a CICS program. You would change application
programs to use EXCI to pass data to a CICS server transaction, which would
then perform the updates with all the facilities available to CICS. However, this
needs major application changes, and requires that you provide a server
transaction, but it does completely remove work from a batch window.

You can remove a data set from CICS file control while CICS is still running. You
use the CEMT transaction to close the data set and re-open it as read-only. You
could then copy the file and make batch updates to the copy while still providing
read access to the original. After the updates are completed, you deallocate the
old version and allocate the new, updated version to CICS. This does not remove
work from the batch window, but does offer limited (read-only) access while
updates are being done.

You can force VSAM to allow sharing by using SHAREOPTIONS (3) or
SHAREOPTIONS(4) but all integrity and recovery issues concerning locking and
logging become an application responsibility. The application changes needed to
give you complete integrity and recoverability are probably too large to
contemplate. For example, you would need to provide logging, locking, and
commit, backout protocols such that a CICS transaction backout would not
remove updates that were performed correctly by a batch job.

Finally, you can change transactions to collect updates while a data set is being
updated in batch and apply the changes later. A memo file is used to collect new
records, and transactions are changed to switch between the main file and the
memo file when the main file is not available for updates or additions.
 Chapter 6. DFSMStvs 325

Inquiries must also check the memo file first. When the main file update or
reorganization is complete, the contents of the memo file are copied into the
main file and the switch is reset so that all accesses are now performed solely
against the main file. This may have integrity problems depending on the
functions that you provide. Adding new records may be safe, but updating
existing records opens up the possibility of updating a record that has been
updated elsewhere.

These methods provide some relief at the expense of added complication or
reduced integrity and recoverability. It is clear that a more general solution to the
problems of running batch updates for CICS VSAM data is needed.

6.3 Some definitions
If you are interested in DFSMStvs as a storage administrator, you may not be
familiar with some of the terms and concepts that will be used throughout this
book. This section offers some brief definitions.

6.3.1 Backward recovery
If a transaction fails, it may leave data in an inconsistent state. Perhaps one
update has been requested, but the program failed before requesting a related
update.

The process of removing changes which are possibly inconsistent is variously
called backward recovery, rollback, or backout. It requires the use of a log that
holds images of the records before they were updated. This log is called an undo
log. In CICS terminology, the records are known as before images.

6.3.2 Forward recovery
If a data set is lost, a common way of getting the data back is to recover from a
backup copy and then to apply all the changes that were made after the backup
copy was taken.

This process is called forward recovery. It requires a log of the changes made to
a data set together with a date and time stamp. This log is called a redo or
forward recovery log.

6.3.3 Atomic updates
By atomic updates, we mean an indivisible group of updates so that either all
updates are made or none are made; it would not be possible for some updates
326 VSAM Demystified

to be made but for others to fail and still maintain data integrity. This property is
an absolute requirement for integrity. Let us illustrate the need for atomic updates
by the simple example of a transfer of money between two bank accounts, as
shown in Figure 6-1.

Figure 6-1 An atomic update example

Clearly, either both changes must be made, or neither can be made. If only the
addition or credit is made, the bank has given the customer money; if only the
subtraction or debit is made, the bank has taken money from the customer.

Making final changes to the data is called committing. Only the application itself
knows when data should be committed and it will request that the data be
committed at an appropriate point in the processing flow. For example, the
application described in Figure 6-1 would request a commit when the updates for
both accounts had been done. It would not make sense to commit if only one
update had been done, as an integrity exposure would be created.

6.3.4 Unit of work and unit of recovery
A unit of work (UOW) is the term used in CICS publications for a set of updates
which are treated as an atomic set of changes. The z/OS Resource Recovery
Services (RRS) use unit of recovery to mean much the same thing. So, a unit of
recovery is the set of updates between synchronization points. There are implicit
synchronization points at the start of a transaction. There should also be explicit
synchronization points requested by an application within a transaction or batch
job. It is preferable to use explicit synchronization for greater control of the
number of updates in a unit of recovery.

Changes to data are durable after a synchronization point. That means that the
changes survive any subsequent failure.

Figure 6-2 shows the units of recovery (noted as A, B, and C) in a job or
transaction. Notice that the points of synchronization are shown, whether

$ 2 0 0 $ 1 0 0-$ 1 0 0

$ 7 00 $8 0 0
+ $ 1 0 0

B e fo re A fte r B e fo re A fte r

Tra n sa c tion to
tra n s fe r $ 1 00

$ 2 0 0 $2 0 0

+ $1 0 0
$ 7 0 0 $8 0 0

In co m p le te
tra n sa c tion
 Chapter 6. DFSMStvs 327

explicitly requested by a commit or implicitly at the start and end of the
transaction.

Figure 6-2 Unit of recovery examples

Figure 6-2 demonstrates what could happen, but this is not actually what we
would recommend. For reasons described later, we recommend that there
should be an explicit commit done before a data set is closed.

Unfortunately, the z/OS RRS and DFSMStvs documentation draw a distinction
between unit of work and unit of recovery. In this case, unit of work has its MVS
definition (a task running under its own TCB) and can refer to more than one unit
of recovery. In Figure 6-2, the sequence of three units of recovery between the
start and end of the transaction is a unit of work.

We apologize to the reader for this conflict in terms and, for consistency, will use
the z/OS definition of a unit of recovery in this book.

6.3.5 Two-phase commit
Two-phase commit is a technique that is widely used by database management
systems to provide an atomic update capability. It is necessary when there are

Start of program synchronized implicit

update 1
update 2

commit synchronized explicit

update 3
update 4
update 5

commit synchronized explicit

update 6

End of program synchronized implicit

}
}
}

A

B

C

328 VSAM Demystified

multiple resource managers involved and we have what is known as a distributed
unit of work.

Two-phase commit requires that there be a coordinator who is called at
synchronization points. In the first phase, the coordinator asks the individual
resource managers (such as DFSMStvs) to prepare to commit the changes that
they have made. The resource managers must reply to the coordinator to say
that they are ready to commit. When they do so, the coordinator will, as the
second phase, tell the updaters to make the changes permanent.

In the case of DFSMStvs, z/OS RRS plays the coordinating role. Commit
requests are generated implicitly at the successful end of a job step and should
also be done explicitly by inserting commit calls in the program logic.

6.3.6 In-flight and in-doubt
A unit of recovery is described as being in-flight if it has made changes to a
record in a recoverable data set, but has not yet committed or backed out the
changes.

A unit of recovery is described as being in-doubt in the brief period of time
between DFSMStvs agreeing to an RRS request for a commit, and the signal
from RRS that all the commit participants have agreed and that the commit
should be done.

6.3.7 Repeatable read
With batch programs using RLS, you have a choice of two ways of handling read
integrity. The default is no read integrity (NRI) where record locks are not
obtained for a read. This means that you may read a record and get uncommitted
data that may be backed out. This is sometimes called a dirty read. The other
option is to ask for a consistent read. In this case, RLS ensures that the read
request waits until updates for that record have been committed.

DFSMStvs adds a third option, repeatable read (also known as consistent read
explicit). This provides a way of ensuring that a record cannot be changed by
someone else until the requester of repeatable read either commits or backs out,
thereby releasing the lock preventing others from updating the record. It also
gives your program isolation from other changes; it cannot see updates made by
other programs which have not been committed and so it is a form of consistent
read.

The difference between a consistent read and a repeatable read is that a
repeatable read keeps a lock on the record read until the unit of recovery
requesting the read commits or backs out. Hence, a consistent read gives us a
 Chapter 6. DFSMStvs 329

consistent view of data where all associated updates have been committed, but
does not maintain that view; a repeatable read allows the requester to maintain
that consistent view of the data so that future reads will get the same data until
the requester itself decides to commit.

6.3.8 Recoverable data sets
RLS introduced the concept of recoverable and non-recoverable data sets to
VSAM itself. Previously, CICS file control supported recoverable VSAM data sets
but only for access from CICS transactions.

A recoverable data set must be accessed by a system that can perform
two-phase commit and backout of failed updates. The VSAM cluster must be
defined with either the LOG(UNDO) or LOG(ALL) attributes to be recoverable.

If LOG(UNDO) is specified, backout can be done but not forward recovery. This
means that the image of a record before it was changed is logged so that the log
entry can be used to undo a change in the event of failure.

If LOG(ALL) is specified, both backout and forward recovery can be done.
Forward recovery requires that the image of a record after a change be stored so
that the log entry can be used to redo a change.

A non-recoverable data set is defined with either the LOG(NONE) attribute or
without the log attribute being specified. Neither a backout nor a forward recovery
capability exists for a non-recoverable data set. As these capabilities do not exist,
they cannot be compromised by batch updates, so batch updating is allowed for
non-recoverable data sets.

6.4 CICS support for recoverable VSAM
You can define VSAM data sets to CICS as recoverable resources. This definition
is in the CICS file resource definition or the ICF catalog. For RLS and DFSMStvs,
the definition must be in the ICF catalog.

CICS can provide logging for both backward and forward recovery. Backward
recovery supports transaction backout by writing a copy of a record before it was
updated to a log, sometimes called an undo log. CICS performs backwards
recovery itself. Forward recovery adds the ability to take a backup copy of a
VSAM data set and use logged updates to reapply changes to that data set to
bring it up to date. This is also referred to as a redo log. CICS does not do
forward recovery; a program such as CICSVR is needed to use the redo logs to
provide forward recovery.
330 VSAM Demystified

If a transaction ends in error, CICS will back out the changes made by that
transaction. CICS provides a commit mechanism used when a logical set of
updates has completed. When changes are committed they cannot be backed
out.

You have long been able to share VSAM data between CICS systems by using
function shipping between Application Owning Regions (AORs) and a File
Owning Region (FOR), as shown in Figure 6-3.

Figure 6-3 Sharing VSAM data through a CICS file owning region

There are several drawbacks with this approach:

� The file owning region is a single point of failure.

� If the workload of the file owning region increases, it may become a
performance bottleneck. You do not have the ability to use Parallel Sysplex
horizontal growth to provide a growth path.

� Transactions are shipped to the system with the file owning region from other
systems using XCF links or VTAM. These can impose performance costs.

6.5 DFSMStvs overview
This section provides an overview of DFSMStvs including its relationship with
RLS.

CICS
AOR

CICS
AOR

CICS
AOR

CICS
AOR

CICS
FOR

VSAM

OS/390 1 OS/390 n
 Chapter 6. DFSMStvs 331

6.5.1 The RLS connection
As we saw in the previous chapter on RLS, which was introduced in
DFSMS/MVS 1.3, RLS provides for a new mode of access to VSAM data. Also,
we learned that RLS uses the System/390® Coupling Facility to provide the lock
structures and data caching abilities to manage and ensure data integrity when
VSAM data is shared. This is the reason that a Coupling Facility is required for
RLS even if you want to share VSAM data in a monoplex. DFSMStvs extends the
sharing of data to CICS and batch level sharing similarly maintaining data
integrity for reads and updates. To accomplish this, DFSMStvs must provide the
same abilities that CICS provides, such as logging for forward and backward
recovery, backout, and a two-phase commit process.

6.5.2 DFSMStvs locking
When a VSAM application issues a GET or a PUT (or the high-level language
equivalent of these VSAM macros), VSAM RLS will acquire locks on behalf of the
application. A coupling facility is used to hold the locks so that they can be shared
by all the SMSVSAM address spaces in a sysplex.

In general, VSAM RLS will obtain share locks for read requests and exclusive
locks for update or delete requests. It will wait for a certain period of time if
another task holds the required locks. A share lock may be obtained for a
resource if there is no lock for that resource or there are share locks held. An
exclusive lock may only be obtained if no other locks are held. Note that CICS
publications refer to share locks as shared locks.

The DFSMStvs access mode uses VSAM RLS locking and so it is compatible
with CICS locking.

6.5.3 DFSMStvs logging
The z/OS system logger is used to provide the logging functions that are needed
to ensure data consistency after failure. The redo log name is held as an attribute
of a recoverable data set while the undo log name is fixed. Forward recovery
logging will be done by both CICS and DFSMStvs to the same redo log. CICS will
log changes made by CICS transactions while DFSMStvs will log changes made
by its callers as shown in Figure 6-4.
332 VSAM Demystified

Figure 6-4 Merged forward recovery log

The system logger is used because it can merge log entries from many z/OS
images to a single log stream, where a log stream is simply a set of log entries. A
single log stream across a sysplex eases management and protects data
integrity.

This ability to merge log entries is used for the forward recovery logs to ease
recovery. The system logger writes log entries to the coupling facility, disk or
both. However, note that each instance of DFSMStvs has a private undo log; the
undo logs are not shared. An instance of DFSMStvs is the single version of
DFSMStvs running in one z/OS image and defined by the IGDSMSxx PARMLIB
member for that z/OS image.

DFSMStvs uses these log streams:

1. Primary, also called backout or undo log stream

There is one backout log stream for each instance of DFSMStvs
(SMSVSAM). It is not shared between SMSVSAMs. The name of the backout
log stream is constructed from the unique name for an instance of DFSMStvs
which you define in SYS1.PARMLIB(IGDSMSxx).

Cluster
ClusterA

CICS using
VSAM RLS

Transactional
VSAM

MVS System Logger

Log
stream
LogA

DEFINE CLUSTER -
 (NAME(ClusterA) -
 LOG(ALL) -
 LOGSTREAMID(LogA)
 Chapter 6. DFSMStvs 333

It is named tvsname.IGWLOG.SYSLOG, where tvsname is of the form
IGWTVnnn.

2. Secondary, also called shunt log stream

There is one shunt log stream for each instance of DFSMStvs. It is not shared
between SMSVSAMs. The name of the shunt log stream is constructed using
the unique name for an instance of DFSMStvs that you define in
SYS1.PARMLIB(IGDSMSxx).

It is named tvsname.IGWSHUNT.SHUNTLOG, where tvsname is of the form
IGWTVnnn.

The shunt log is used when backout requests fail and for long running units of
recovery. In these cases log records are moved so that DFSMStvs can better
manage space in the primary log.

3. Forward recovery log streams

Forward recovery logs are used by data sets for which LOG(ALL) is specified.
When LOG(ALL) is specified you must also specify LOGSTREAMID to
provide the name of the forward recovery logstream. This logstream is used
by all instances of DFSMStvs and CICS to provide forward recovery
capability.

4. Log of logs

This is an optional log stream, it is specified in SYS1.PARMLIB(IGDSMSxx). If
it is defined, it contains copies of log records that are used to automate
forward recovery.

Although the log of logs is optional, we recommend that it be used if you want
to use forward recovery at all. However, when you define a log of logs, it must
be present otherwise DFSMStvs fails.

Figure 6-5 shows a simple example with undo and redo logging. The vertical
arrow shows the commit point at which time the undo log records are effectively
forgotten. Note that the undo log records show how the records existed before
the transaction, while the redo log records show how the records exist after they
are updated. The log records are prefixed with header information used for
recovery or backout.
334 VSAM Demystified

Figure 6-5 Undo and redo logging

6.5.4 Recovery coordination
In the case of DFSMStvs, the resources that are being protected are the records
within recoverable VSAM data sets. There are three types of participants in
resource recovery:

1. Application: The application program requests the use of resources, in this
case records. It is responsible for requesting that changes be committed to
make them permanent or that they be backed out to remove them and
thereby return the records to their previous state.

2. Resource Manager: DFSMStvs uses the VSAM provided interfaces for
two-phase commit and backout. These interfaces allow for:

– Reading records
– Updating records
– Insertion of records
– Erasure of records

3. Syncpoint manager: RRS is the syncpoint manager. It is responsible for
providing a single point of coordination for the commit processing of
resources owned by different resource managers. It provides the interfaces
that an application uses to:

– Commit changes
– Back out changes

$200

$700 $800

$100

$100

$200

Account 1

Account 2 Account 2

Account 1

$700

$800

Undo log

Redo log

Account 1 Account 2

Account 2Account 1

Commit point

h
d
r

h
d
r

h
d
r

h
d
r

{VSAM
data set
 Chapter 6. DFSMStvs 335

z/OS Recoverable Resource Services are used to coordinate commit and
backout requests from applications and any other resource managers that
may be needed. Apart from DFSMStvs, other resource managers using z/OS
RRS are DB2 UDB, IMS and MQSeries. This means that an application can
use a combination of VSAM, IMS, DB2 UDB and MQSeries services and
have commit and backout performed atomically for all these resources.

Figure 6-6 RRS as the sync point manager

The DFSMStvs code calls RRS to register its interest in a unit of recovery. A unit
of recovery represents the set of changes made by an application to a resource
since the last commit (implicit or explicit) or backout. Each unit of recovery is
associated with a context.

DFSMStvs writes a copy of an unmodified record (the record as it existed before
an update) to the undo log and, when the data set’s log attribute is set to ALL,
writes a copy of the modified record (as it exists after an update) to the forward
recovery log.

When an application requests either a commit or a backout, z/OS RRS will call
DFSMStvs to do the commit or backout on behalf of the application. The
processing flow is shown here in a simplified form for a successful commit:

z/OS
RRS

Transactional
VSAM MQ Series DB2 UDB

Start transaction
- Update VSAM record
- Insert row in DB2 table
- Queue message
- Commit
End transaction

Commit processing
336 VSAM Demystified

Figure 6-7 Commit processing participants

In Step 1, the application decides that it is ready to commit changes. It requests a
commit and that request is passed to the syncpoint manager. The syncpoint
manager sees what resources are involved and, in Step 2, asks each resource
manager that has expressed interest in this unit of recovery to prepare to commit
and notify it of readiness. If all the resource managers reply that they are ready to
commit, the syncpoint manager tells them to complete the process in Step 3.
When that is done, the syncpoint manager can then confirm that the commit has
completed to the application in Step 4.

6.6 Our experiences with implementation
You must have VSAM RLS already set up before you can implement TVS. For
details about setting up VSAM RLS, refer to “Implementing VSAM RLS” on
page 253.

Once RLS is set up, you would already have defined the necessary lock and
cache structures in the coupling facility. Now you need to go through the following
steps to implement TVS.

� Define list structures in the coupling facility
� Define the log streams in the coupling facility
� Define DASD staging data sets
� Set up the security definitions
� Define the SMS classes
� Modify SYS1..PARMLIB(IGDSMSxx)

Process updates
Request commit Request prepare
 Prepare resources

 Request commit
 Confirm commit

Application Resource Syncpoint
 Managers Manager

 Confirm commit
Continue

1

2

3
4

 Chapter 6. DFSMStvs 337

The rest of this section describes each of these steps.

6.6.1 Define list structures in the CFRM policy
You have to define the list structures in the coupling facility resource
management (CFRM) policy. The list structures contain the various log streams
used by TVS. For details, see “Define the log structures and log streams in
LOGR policy” on page 340.

Figure 6-8 provides sample JCL to define the list structures. Four list structures
are defined by this job.
338 VSAM Demystified

Figure 6-8 Define list structures in the CFRM policy for TVS

//LstStruc JOB (999,POK),'CFRM',CLASS=A,REGION=4096K,
// MSGCLASS=X,TIME=10,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//STEP1 EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSIN DD *
 DATA TYPE(CFRM) REPORT(YES)
 DEFINE POLICY NAME(CFRM21) REPLACE(YES)

 CF NAME(CF01) DUMPSPACE(2048) PARTITION(E) CPCID(00)
 TYPE(002064) MFG(IBM) PLANT(02) SEQUENCE(000000010ECB)

 CF NAME(CF02) DUMPSPACE(2048) PARTITION(D) CPCID(00)
 TYPE(002064) MFG(IBM) PLANT(02) SEQUENCE(000000010ECB)
STRUCTURE NAME(LOG_IGWLOG_001)
 INITSIZE(8192)
 SIZE(16384)
 PREFLIST(CF02,CF01)
 ALLOWAUTOALT(YES)
 DUPLEX(ALLOWED)

 STRUCTURE NAME(LOG_IGWSHUNT_001)
 INITSIZE(8192)
 SIZE(16384)
 PREFLIST(CF01,CF02)
 ALLOWAUTOALT(YES)
 DUPLEX(ALLOWED)

 STRUCTURE NAME(LOG_FORWARD_001)
 INITSIZE(8192)
 SIZE(16384)
 PREFLIST(CF01,CF02)
 ALLOWAUTOALT(YES)
 DUPLEX(ALLOWED)

 STRUCTURE NAME(LOG_IGWLGLGS_001)
 INITSIZE(8192)
 SIZE(16384)
 PREFLIST(CF02,CF01)
 ALLOWAUTOALT(YES)
 DUPLEX(ALLOWED)
 Chapter 6. DFSMStvs 339

6.6.2 Define the log structures and log streams in LOGR policy
The definitions for log structures and log streams are done in the system LOGR
policy. Their definitions refer to the list structures you defined in the previous step.

A sample JCL is provided in Figure 6-9. In this job we define the log structures
first. Then in these log structures, we define the log streams for SYSLOG and
SHUNTLOG for three z/OS systems in our sysplex. Finally, we define the log
streams for FR.LOG and LOG.OF.LOGS.
340 VSAM Demystified

Figure 6-9 Define the log structures and log streams for TVS

//TVSLOG JOB (999,POK),'LOGR RRS',CLASS=A,REGION=4M,
// MSGCLASS=T,TIME=10,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//STEP1 EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSIN DD *
 DATA TYPE(LOGR) REPORT(YES)

 DEFINE STRUCTURE NAME(LOG_IGWLOG_001) LOGSNUM(5)
 MAXBUFSIZE(64000) AVGBUFSIZE(2048)

 DEFINE STRUCTURE NAME(LOG_IGWSHUNT_001) LOGSNUM(5)
 MAXBUFSIZE(64000) AVGBUFSIZE(2048)

 DEFINE STRUCTURE NAME(LOG_FORWARD_001) LOGSNUM(10)
 MAXBUFSIZE(64000) AVGBUFSIZE(2048)

 DEFINE STRUCTURE NAME(LOG_IGWLGLGS_001) LOGSNUM(1)
 MAXBUFSIZE(64000) AVGBUFSIZE(2048)

 DEFINE LOGSTREAM
 NAME(IGWTV063.IGWLOG.SYSLOG)
 STRUCTNAME(LOG_IGWLOG_001)
 LS_DATACLAS(SHARE33)
 HLQ(LOGR) MODEL(NO) LS_SIZE(1180)
 LOWOFFLOAD(15) HIGHOFFLOAD(95)
 STG_DUPLEX(YES) DUPLEXMODE(COND)
 STG_DATACLAS(SHARE33)
 DIAG(YES)

 DEFINE LOGSTREAM
 NAME(IGWTV064.IGWLOG.SYSLOG)
 STRUCTNAME(LOG_IGWLOG_001)
 LS_DATACLAS(SHARE33)
 HLQ(LOGR) MODEL(NO) LS_SIZE(1180)
 LOWOFFLOAD(15) HIGHOFFLOAD(95)
 STG_DUPLEX(YES) DUPLEXMODE(COND)
 STG_DATACLAS(SHARE33)
 DIAG(YES)
 Chapter 6. DFSMStvs 341

Figure 6-10 Define the log structures and log streams for TVS (cont)

 DEFINE LOGSTREAM
 NAME(IGWTV065.IGWLOG.SYSLOG)
 STRUCTNAME(LOG_IGWLOG_001)
 LS_DATACLAS(SHARE33)
 HLQ(LOGR) MODEL(NO) LS_SIZE(1180)
 LOWOFFLOAD(15) HIGHOFFLOAD(95)
 STG_DUPLEX(YES) DUPLEXMODE(COND)
 STG_DATACLAS(SHARE33)
 DIAG(YES)

 DEFINE LOGSTREAM
 NAME(IGWTV063.IGWSHUNT.SHUNTLOG)
 STRUCTNAME(LOG_IGWSHUNT_001)
 LS_DATACLAS(SHARE33)
 HLQ(LOGR) MODEL(NO) LS_SIZE(100)
 LOWOFFLOAD(15) HIGHOFFLOAD(95)
 STG_DUPLEX(YES) DUPLEXMODE(COND)
 STG_DATACLAS(SHARE33)
 DIAG(YES)

 DEFINE LOGSTREAM
 NAME(IGWTV064.IGWSHUNT.SHUNTLOG)
 STRUCTNAME(LOG_IGWSHUNT_001)
 LS_DATACLAS(SHARE33)
 HLQ(LOGR) MODEL(NO) LS_SIZE(100)
 LOWOFFLOAD(15) HIGHOFFLOAD(95)
 STG_DUPLEX(YES) DUPLEXMODE(COND)
 STG_DATACLAS(SHARE33)
 DIAG(YES)

 DEFINE LOGSTREAM
 NAME(IGWTV065.IGWSHUNT.SHUNTLOG)
 STRUCTNAME(LOG_IGWSHUNT_001)
 LS_DATACLAS(SHARE33)
 HLQ(LOGR) MODEL(NO) LS_SIZE(100)
 LOWOFFLOAD(15) HIGHOFFLOAD(95)
 STG_DUPLEX(YES) DUPLEXMODE(COND)
 STG_DATACLAS(SHARE33)
 DIAG(YES)
342 VSAM Demystified

Figure 6-11 Define the log structures and log streams for TVS (cont)

 DEFINE LOGSTREAM
 NAME(IGWTVS.FR.LOG001)
 STRUCTNAME(LOG_FORWARD_001)
 LS_DATACLAS(SHARE33)
 HLQ(LOGR) MODEL(NO) LS_SIZE(100)
 LOWOFFLOAD(0) HIGHOFFLOAD(80)
 STG_DUPLEX(NO)

 DEFINE LOGSTREAM
 NAME(IGWTVS.LOG.OF.LOGS)
 STRUCTNAME(LOG_IGWLGLGS_001)
 LS_DATACLAS(SHARE33)
 HLQ(LOGR) MODEL(NO) LS_SIZE(1180)
 LOWOFFLOAD(0) HIGHOFFLOAD(80)
 STG_DUPLEX(NO)

Note: IBM recommends that users specify DIAG(YES) for any TVS undo and
shunt logs. This will cause the system logger to take a dump in the event of
errors such as a lost block.
 Chapter 6. DFSMStvs 343

Figure 6-12 Sample JCL to define Log Streams

//DEFCFRPK JOB (999,POK),'CFRM',CLASS=A,REGION=4096K,
// MSGCLASS=X,TIME=10,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//STEP1 EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSIN DD *
 DATA TYPE(CFRM) REPORT(YES)
 DEFINE POLICY NAME(CFRM21) REPLACE(YES)

 CF NAME(CF01) DUMPSPACE(2048) PARTITION(E) CPCID(00)
 TYPE(002064) MFG(IBM) PLANT(02) SEQUENCE(000000010ECB)

 CF NAME(CF02) DUMPSPACE(2048) PARTITION(D) CPCID(00)
 TYPE(002064) MFG(IBM) PLANT(02) SEQUENCE(000000010ECB)
/*---*/
/* RRS STRUCTURES FOR LOGSTREAMS */
/*---*/
STRUCTURE NAME(RRS_ARCHIVE_1)
 INITSIZE(8000)
 SIZE(16000)
 PREFLIST(CF01,CF02)
 REBUILDPERCENT(5)
 STRUCTURE NAME(RRS_RMDATA_1)
 INITSIZE(8000)
 SIZE(16000)
 PREFLIST(CF01,CF02)
 REBUILDPERCENT(5)
 STRUCTURE NAME(RRS_MAINUR_1)
 INITSIZE(8000)
 SIZE(16000)
 PREFLIST(CF01,CF02)
 REBUILDPERCENT(5)
 STRUCTURE NAME(RRS_DELAYEDUR_1)
 INITSIZE(8000)
 SIZE(16000)
 PREFLIST(CF01,CF02)
 REBUILDPERCENT(5)
 STRUCTURE NAME(RRS_RESTART_1)
 INITSIZE(8000)
 SIZE(16000)
 PREFLIST(CF01,CF02)
 REBUILDPERCENT(5)
344 VSAM Demystified

Figure 6-13 DFSMStvs Sample RACF Definitions

6.6.3 Define SMS constructs for DFSMStvs
� Explicit definition of DATACLAS and STORCLAS

� May also want to specify MGMTCLAS

� Log archiving

� Log data back up

� Log migration

� Log stream and log stream staging data sets are single extent VSAM linear
data sets (shareoptions '3,3')

� Requires an active SMS address space

� All data sets and logs must be accessible to all members of the sysplex that
are required for, or may perform, peer recovery.

6.7 DFSMStvs problem determination tips
Here we provide some tips on how you can determine the cause of an error,
condition, or problem.

RDEFINE LOGSTRM IGWTV001.** UACC(NONE)
Granting access to the log streams:
PERMIT IGWTV001.** CLASS(LOGSTRM) ACCESS(UPDATE) ID(smsvsam_userid)
PERMIT IGWTV001.** CLASS(LOGSTRM) ACCESS(READ) ID(authorized_browsers)
PERMIT IGWTV001.** CLASS(LOGSTRM) ACCESS(UPDATE) ID(archive_userid)

RDEFINE LOGSTRM FORWARD.RECOVERY.** UACC(NONE)
RDEFINE LOGSTRM FR.LOG.** UACC(NONE)
RDEFINE LOGSTRM LOG.OF.LOGS UACC(NONE)
PERMIT FORWARD.RECOVERY.** CLASS(LOGSTRM) ACCESS(UPDATE) ID(smsvsam_userid)
PERMIT FR.LOG.** CLASS(LOGSTRM) ACCESS(UPDATE) ID(smsvsam_userid)
PERMIT LOG.OF.LOGS CLASS(LOGSTRM) ACCESS(UPDATE) ID(smsvsam_userid)

Permit all DFSMStvs instances access to each other's system logs
Do the following for each instance:
PERMIT IGWTV001.** CLASS(LOGSTRM) ACCESS(UPDATE) ID(smsvsam_userid)
PERMIT IGWTV002.** CLASS(LOGSTRM) ACCESS(UPDATE) ID(smsvsam_userid)
PERMIT IGWTV003.** CLASS(LOGSTRM) ACCESS(UPDATE) ID(smsvsam_userid)
Etc.
 Chapter 6. DFSMStvs 345

6.7.1 How to take a dump of the problem?
TVS uses a function called CER_ProcessErrorAndContinue when it encounters
an error which recycling the server would not resolve.

� Mechanism for taking a dump without terminating the thread or the server

� It manifests as an 0F4 in module IGWFCPER but it is really generated by the
calling module

6.7.2 Classes of errors
� RRS errors (for example, when attempting to register)

� System logger errors (for example, a log stream has become unavailable)

� When all locks should have been released but some are left orphaned

� When locks should have been marked retained but are not

� When an attempt to ENDREQ an RPL fails

� When an attempt to allocate or deallocate a data set fails

� When end of volume fails during backout

6.7.3 Determining the Failing Module
� Go into IPCS and open the dump.

� Go to IPCS option 6 and enter SUMMARY FORMAT.

� Find the failing TCB (start by going to the bottom and finding the one with a
completion code of 0F4).

� Find the RTM2 work area and extract the value in register 13.

� On the command line enter IP IGWVRNSA <value in register 13>.

� This displays a summary of the calling chain by running the save areas.

� The failing module is the one in front of IGWFCPER.

� Any module name beginning with IGW8 or IGW9 is a DFSMStvs module and
the part of TVS responsible for expressing interest in units of recovery,
commit and backout.

� Modules beginning with IGW8 are part of recoverable file services.

� Modules beginning with IGW9 are part of the DFSMStvs logger.

� Reason codes in the form of 6Fxxxxxx are from recoverable file services.

� Reason codes in the form of 70xxxxxx are from the DFSMStvs logger.
346 VSAM Demystified

6.7.4 Apparent batch job hangs
This may be caused by many different reasons other than TVS. If you feel that a
batch has become hung, it could be from several reasons including:

� RLS or DFSMStvs

� Catalog

� The system logger

� RRS

� Anyone else with whom the batch job may have been communicating

Start by dumping both SMSVSAM and the batch job.

Using IPCS option 6 and SUMMARY FORMAT, find the hung TCB (usually the
batch job's last TCB).

Determine with who it was cross memory using the linkage stack and dump that
as well.

6.7.5 Other hangs
Here are some actions that you can take to try to analyze the cause of hang
scenarios:

� First check for GRS contention: D GRS,C

� Next take a dump of SMSVSAM, including its data spaces

� Go into IPCS and enter on the command line: IP IGWVIPCS

– Select option 1: TCB analysis

The bottom of the report should list the holders of latches and who wants them.
Identify any waiters or holders of latches who are currently suspended.

6.7.6 Quiescing a data set
To quiesce a data set you need to first display the jobs that are using the data set
using the following commands:

DISPLAY SMS,DSNAME
IDCAMS SHCDS LISTDS(dsname),JOBS

Once you have identified the jobs then allow them to either complete or cancel
them.

To quiesce the data set use the following command:
 Chapter 6. DFSMStvs 347

VARY SMS,SMSVSAM,SPHERE

Perform the operations which required the data set to be quiesced.

Enable the data set for RLS and DFSMStvs use:

VARY SMS,SMSVSAM,SPHERE

6.7.7 Close/delete/rename of data set with inflight UR
Closing the data set could allow any of the following to occur:

� The data set can be deleted
� The data set can be renamed
� A PermitNonRLSUpdate can be done
� The data set can be quiesced
� The locks associated with the data set can become retained

Do not delete/rename data sets with an outstanding inflight UR, if backout is
required, UR will be shunted.

Do not delete/rename data sets with shunted log records and retained locks; it
can cause loss of association between the data set and its log records and locks.

A new data set could be allocated with the old name.

6.7.8 New and changed system level commands for DFSMStvs
Several commands have been either added or changed to support DFSMStvs.

DISPLAY SMS,TRANVSAM,ALL
This command displays information about the instance of DFSMStvs on this
system, or on all systems in the sysplex when the ALL keyword is specified. The
output includes the following information:

� The activity keypoint (AKP) trigger, which is the number of logging operations
between the taking of keypoints

� The status of this instance of DFSMStvs (initializing, active, quiescing,
quiesced, disabling, disabled)

� How DFSMStvs started:

– Cold start

The log data was not read, and any old data was discarded.

– Warm start

The log data was read and processed.
348 VSAM Demystified

� DFSMStvs status with respect to resource recovery services (RRS)

� The quiesce timeout value

� All logs known to this instance of DFSMStvs, including the log of logs if one is
in use

� The number of active units of recovery

Figure 6-14 is the output of the command from our test system.
 Chapter 6. DFSMStvs 349

Figure 6-14 Output of D SMS, TRANSVSAM,ALL

DISPLAY SMS,SHUNTED, {SPHERE(sphere)|UR({urid|ALL})}
This command displays the entries currently contained in the shunt logs of the
systems in the sysplex. Entries are moved to the shunt log when DFSMStvs is

 IEE932I 319
 IGW800I 16.32.01 DISPLAY SMS,TRANSACTIONAL VSAM,ALL
DISPLAY SMS,TRANSACTIONAL VSAM,ALL - SERVER STATUS
 System TVSNAME State Rrs #Urs Start AKP QtimeOut
 -------- -------- ------ ----- -------- --------- -------- --------
 SC63 IGWTV063 ACTIVE REG 0 WARM/WARM 1000 300
 SC65 IGWTV065 ACTIVE REG 0 WARM/WARM 1000 300
 SC64 IGWTV064 ACTIVE REG 0 WARM/WARM 1000 300
 DISPLAY SMS,TRANSACTIONAL VSAM,ALL LOGSTREAM STATUS
 LogStreamName: IGWTV063.IGWLOG.SYSLOG
 System TVSNAME State Type Connect Status
 -------- -------- ------------ ---------- --------------
 SC63 IGWTV063 Enabled UnDoLog Connected
 LogStreamName: IGWTV063.IGWSHUNT.SHUNTLOG
 System TVSNAME State Type Connect Status
 -------- -------- ------------ ---------- --------------
 SC63 IGWTV063 Enabled ShuntLog Connected
 LogStreamName: IGWTVS.LOG.OF.LOGS
 System TVSNAME State Type Connect Status
 -------- -------- ------------ ---------- --------------
 SC63 IGWTV063 Enabled LogOfLogs Connected
 SC64 IGWTV064 Enabled LogOfLogs Connected
 SC65 IGWTV065 Enabled LogOfLogs Connected
LogStreamName: IGWTV065.IGWLOG.SYSLOG
 System TVSNAME State Type Connect Status
 -------- -------- ------------ ---------- --------------
 SC65 IGWTV065 Enabled UnDoLog Connected
LogStreamName: IGWTV065.IGWSHUNT.SHUNTLOG
 System TVSNAME State Type Connect Status
 -------- -------- ------------ ---------- --------------
 SC65 IGWTV065 Enabled ShuntLog Connected
LogStreamName: IGWTV064.IGWLOG.SYSLOG
 System TVSNAME State Type Connect Status
 -------- -------- ------------ ---------- --------------
 SC64 IGWTV064 Enabled UnDoLog Connected
LogStreamName: IGWTV064.IGWSHUNT.SHUNTLOG
 System TVSNAME State Type Connect Status
 -------- -------- ------------ ---------- --------------
 SC64 IGWTV064 Enabled ShuntLog Connected
350 VSAM Demystified

unable to finish processing a syncpoint, for example, due to an I/O error. As long
as a shunted entry exists, the locks associated with that entry are retained.

These types of information can be displayed in response to this command. When
neither the SPHERE nor URID keyword is specified, this command results in a
list of systems in the sysplex and the number of units of recovery which that
system has shunted:

� When the SPHERE keyword is specified, this command results in a list of
shunted work for the sphere specified for all of the systems in the sysplex.

� When the URID keyword is specified, this command results in a list of
shunted work for the unit of recovery specified for all of the systems in the
sysplex. When ALL is specified, this command results in a list of shunted work
for all shunted units of recovery for all the systems in the sysplex. To avoid
flooding the console, DFSMStvs writes out 255 lines and then issues a WTOR
to determine whether or not to continue.

If the error is correctable, the installation might choose to fix the problem and
then request that DFSMStvs again attempt processing of the entry by issuing the
SHCDS RETRY command. If the data set cannot be restored to a point where it
is consistent with the log entries, so that it does not make sense to attempt
processing of the log entry again, the installation might choose to discard the log
entry by issuing the SHCDS PURGE command.

Figure 6-15 is the output of the command showing that there are no shunted
units of work currently in the DFSMStvs shunt log.

Figure 6-15 Output of the D SMS,SHUNTED(ALL) command

DISPLAY SMS,JOB(jobname)
Displays information about a particular job that is using DFSMStvs services on
one of the systems in the sysplex. The output includes:

� The name of the current step within the job

� The current URID for the job

� The status of the unit of recovery (in-reset, in-flight, in-prepare, in-commit,
in-backout, indoubt)

 IEE932I 452
 IGW803I 17.19.03 DISPLAY SMS,SHUNTED (Summary Data)
SysName # Urid(s) SysName # Urid(s) SysName # Urid(s)
 -------- -------- -------- -------- -------- --------
 SC63 0 SC64 0 SC65 0
 Chapter 6. DFSMStvs 351

DISPLAY SMS,URID(urid |ALL)
This command displays information about a particular unit of recovery currently
active within the sysplex or about all units of recovery currently active on the
system, on which the command was issued, on whose behalf DFSMStvs has
performed any work. This parameter does not include information about work
that has been shunted, because you can use the DISPLAY SMS,SHUNTED
command to display that information. This parameter also does not include
information about units of recovery that might be in restart processing as a result
of an earlier failure. This work is not considered to be currently active, because it
is not associated with any batch job, and the units of recovery associated with the
work will end as soon as commit or backout processing for them can be
completed. The output includes this information:

� The age of the unit of recovery

� The name of the job with which the unit of recovery is associated

� The name of the current step within the job

� The status of the unit of recovery (in-reset, in-flight, in-prepare, in-commit,
in-backout, indoubt)

� The user ID associated with the job

Figure 6-16 shows the output from the command.

Figure 6-16 Output of D SMS,URID(ALL) cDFSMStvsommandDFSMStvs

DISPLAY SMS,LOG(logstreamid|ALL)
This command displays information about a log stream that DFSMStvs is
currently using on one of the systems in the sysplex. If ALL is specified,
information is displayed about all of the logs in use on the entire sysplex. The
output includes the status of the log stream (failed or available), type of log (undo,
shunt, forward recovery, or log of logs), the job name and URID of the oldest unit
of recovery using the log, and a list of all DFSMStvs instances that are using the
log.

If information about a specific log stream is requested and the log stream is
either a system log or a forward recovery log, the output includes the names of
the jobs using the log stream.

 RESPONSE=SC63
 IEE932I 489
 IGW802I DFSMS REQUEST TO DISPLAY ACTIVE TRANSACTIONAL VSAM UR(s)
 WAS REJECTED, SPECIFIED URID(s) ARE NOT ACTIVE
 ON ANY TRANSACTIONAL VSAM INSTANCE IN THE SYSPLEX.
352 VSAM Demystified

This command might be issued to determine why a log stream is increasing in
size. If a unit of recovery is long running, DFSMStvs would be unable to delete
any log blocks that contain data associated with the unit of recovery, which in turn
would make truncation of the log stream impossible.

Figure 6-17 shows the output of this command using a specific logstream name,
IGWTV063.IGWLOG.SYSLOG.

Figure 6-17 Output of D SMS,LOG(IGWTV063.IGWLOG.SYSLOG command

DISPLAY SMS,DSNAME(dsn)
For a given fully qualified data set name, this command displays the jobs
currently accessing the data set using DFSMStvs on the systems within the
sysplex. Figure 6-18 shows that the specified data set is not open for DFSMStvs
access.

Figure 6-18 Output of the D SMS, DSNAME(dsn) commandDFSMStvs

DISPLAY SMS,OPTIONS
This command displays all of the SMS parameters and their status at the time
this command is issued. The display indicates whether each option is on or off,
what data sets are being used, the size of regions, the time interval for recording
data, and all other parameter specifics. When DFSMStvs is running on the
system, the output of this command includes DFSMStvs-related information. In
the output shown in Figure 6-19, we only show the DFSMStvs related information

 RESPONSE=SC63
 IEE932I 512
 IGW804I 17.54.29 DISPLAY SMS,LOG
 DISPLAY SMS,LOG - LOG STREAM STATUS
 Name: IGWTV063.IGWLOG.SYSLOG State: Enabled Type: UnDo
 System TVSNAME JobName Urid of Oldest Log Block
 -------- -------- -------- --------------------------------
 SC63 IGWTV063 **NONE** --------- NO ACTIVE UR ---------*
 DISPLAY SMS,LOG - LOG STREAM USAGE
 LogStreamName: IGWTV063.IGWLOG.SYSLOG
 System TVSNAME JobName JobName JobName JobName JobName
 -------- -------- -------- -------- -------- -------- --------
 SC63 IGWTV063 **NONE**
 *OLDEST URID ACROSS ALL SYSTEMS IN THE SYSPLEX

 IGW805I DFSMS REQUEST TO DISPLAY TRANSACTIONAL VSAM USAGE OF
 DATASET: IGWTV063.IGWLOG.SYSLOG WAS REJECTED.
 DATASET NOT KNOWN TO TRANSACTIONAL VSAM.
 Chapter 6. DFSMStvs 353

|

Figure 6-19 Modified Output from the D SMS,OPTIONS command

6.7.9 SET SMS and SETSMS commands
The SET SMS command and the SETSMS command use the same
subparameters as the new DISPLAY command subparameter described above.

� SET SMS

This command, with the subparameters supplied, prepares the storage
management subsystem environment.

� SETSMS

This command, with the subparameters supplied, activates the storage
management subsystem environment.

6.7.10 VARY SMS command
The VARY SMS command, with the subparameters supplied, changes the state
of the storage management subsystem environment.

 IGD002I 18:31:24 DISPLAY SMS 578
 /* This output has been edited to remove all non DFSMStvs related data*/
LOCAL_DEADLOCK = 15
 GLOBAL_DEADLOCK = 4
 REVERIFY = NO
 ACSDEFAULTS = NO
 DSNTYPE = PDS
 PDSESHARING = EXTENDED
RLS_MAX_POOL_SIZE = 100MB
 RLSINIT = YES
 RLSTMOUT = 0
 COMPRESS = GENERIC
 LOG_OF_LOGS = IGWTVS.LOG.OF.LOGS
 QTIMEOUT = 300
 TVSNAME = 063
 AKP = 1000
 TV_START_TYPE = WARM
 MAXLOCKS = (0,0)
 CICSVR_INIT = YES
 CICSVR_DSNAME_PREFIX = DWWUSER.V3R1M0
 Rls_MaxCfFeatureLevel = Z
 PDSE_MONITOR = (YES,0,0)
354 VSAM Demystified

� Log

This enables, quiesces, or disables DFSMStvs access to a log stream.

� SMSVSAM,SPHERE

This quiesces or unquiesces a data set for DFSMStvs or RLS access.

� TRANVSAM

This enables, quiesces, or disables a DFSMStvs instance or all DFSMStvs
instances in the sysplex.

� TRANVSAM(nnn),PEERRECOVERY

This starts or stops peer recovery processing for a failed instance of
DFSMStvs.

For more detailed information on new and changed system level commands, see
z/OS, V1R4 DFSMStvs Planning and Operating Guide, GC26-7485.

6.7.11 SYS1.PARMLIB changes
IFAPRDxx member of PARMLIB needs to be updated to reflect the addition of the
priced feature DFSMStvs.

Here is an example of the entry to IFAPRDxx that was used on our test system;

Figure 6-20 Sample IFAPRDxx parmlib member to enable DFSMStvs

Note: When using the VARY SMS for TVS, the following subparameters are
valid:

� LOG
� SMSVSAM,SPHERE
� TRANVSAM
� TRANVSAM(nnn),PEERRECOVERY

Important: DFSMStvs is a priced feature of DFSMS. To be able to initialize
DFSMStvs, users must update the IFAPRDxx member of PARMLIB

PRODUCT OWNER('IBM CORP')
 NAME('Z/OS')
 ID(5694-A01)
 VERSION(*) RELEASE(*) MOD(*)
 FEATURENAME(DFSMSTVS)
 STATE(ENABLED)
 Chapter 6. DFSMStvs 355

Figure 6-21 shows sample IGDSMSxx member in SYS1.PARMLIB. The
parameters relevant to DFSMStvs are in bold letters. Each variable is described
below.

Figure 6-21 Sample SYS1.PARMLIB(IGDSMSxx) member

� RLSINIT(NO|YES)

This is used to activate the SMSVSAM address space.

� RLS_MAX_POOL_SIZE(nnn|100)

This specifies the maximum size, in megabytes, of the SMSVSAM local buffer
pool.

� SMF_TIME(NO|YES)

This is used to align the interval-type SMF 42 records for DFSMS with the
SMF_TIME interval.

SMSACDS(acds)
COMMDS(commds)
INTERVAL(nnn|15)
DINTERVAL(nnn|150)
REVERIFY(YES|NO)
ACSDEFAULTS(YES|NO)
SYSTEMS(8|32)
TRACE(OFF|ON)
SIZE(nnnnnK|M)
TYPE(ALL|ERROR)
JOBNAME(jobname|*)
ASID(asid|*)
SELECT(event,event....)
DESELECT(event,event....)
DSNTYPE(LIBRARY|PDS)
RLSINIT(NO|YES)
RLS_MAX_POOL_SIZE(nnn|100)
SMF_TIME(NO|YES)
CF_TIME(nnn|3600)
BMFTIME(nnn|3600)
CACHETIME(nnn|3600)
DEADLOCK_DETECTION(iii|15,kkk|4)
RLSTMOUT(nnn|0)
SYSNAME(sys1,sys2....)
TVSNAME(nnn1,nnn2....)
TV_START_TYPE(WARM|COLD,WARM|COLD...)
AKP(nnn|1000,nnn|1000)
LOG_OF_LOGS(logstream)
QTIMEOUT(nnn|300)
MAXLOCKS(max|0,incr|0)
356 VSAM Demystified

� CF_TIME(nnn|3600)

This is used to align creation of all CF related SMF 42 subtypes.

� BMFTIME(nnn|3600)

This specifies the number of seconds that SMS is to wait between recording
SMF records for buffer management facility (BMF) cache use. You can specify
a value from 1 to 86399 (23 hours, 59 minutes, 59 seconds), and the default is
3600 (one hour). The SMF_TIME keyword, if set to YES, overrides the
BMFTIME keyword.

� CACHETIME(nnn|3600)

This specifies the number of seconds between recording SMF records for
device cache use. The CACHETIME parameter applies only to the volumes
behind an IBM 3990 Storage Control with cache unit. You can specify a value
from 1 to 86399 (23 hours, 59 minutes, 59 seconds), and the default is 3600
(one hour). The SMF_TIME keyword, if set to YES, overrides the CACHETIME
keyword.

� DEADLOCK_DETECTION(iii|15,kkk|4)

This specifies the interval for detecting deadlocks between systems.

� RLSTMOUT(nnn|0)

This specifies a timeout value for DFSMStvs requests for required locks.

� SYSNAME(sys1,sys2....)

This specifies the name or names of the systems on which DFSMStvs
instances are to run.

� TVSNAME(nnn1,nnn2....)

This specifies the identifier or identifiers of DFSMStvs instances that are to
run in the sysplex.

� TV_START_TYPE(WARM|COLD,WARM|COLD...)

This specifies the type of start that each instance of DFSMStvs is to perform.

� AKP(nnn|1000,nnn|1000)

This specifies the activity keypoint trigger value, which is the number of
logging operations between taking keypoints, for one or more.

� LOG_OF_LOGS(logstream)

This specifies the log stream that is to be used as the log of logs.

� QTIMEOUT(nnn|300)

This specifies the quiesce exit timeout value.
 Chapter 6. DFSMStvs 357

� MAXLOCKS(max|0,incr|0)

Specifies the maximum number of unique lock requests that a single unit of
recovery can make.

For more detailed information about new and changed subparameters in
IGDSMSxx, see z/OS DFSMStvs Planning and Operating Guide, SC26-7348.

6.7.12 Changes to Job Control Language (JCL)
Here is a list of the JCL changes to support DFSMStvs.

� RLSTMOUT

This subparameter of the EXEC statement specifies a timeout value for
DFSMStvs requests for required locks.

– CRE

This subparameter of the RLS statement obtains a shared lock for VSAM
record-level sharing (RLS).

For more detailed information on these changes, see z/OS DFSMStvs Planning
and Operating Guide, SC26-7348.

6.7.13 Changes to IDCAMS
There are numerous changes and additions to IDCAMS commands. Here are
some of the modifications.

� ALLOCATE

Here is a list of changes to the ALLOCATE command.

– BWO(TYPECICS)

The TYPECICS option of the BWO parameter specifies
backup-while-open (BWO) in a DFSMStvs environment. For RLS
processing, this parameter activates BWO processing for DFSMStvs.

– DATACLASS CISIZE

For DFSMStvs, specification of n*2K avoids wasting space in the coupling
facility cache structure.

– SHAREOPTIONS

When you use DFSMStvs access, DFSMS assumes that the value of
SHAREOPTIONS is (3,3).

� ALTER

Here is a list of changes to the ALTER command.
358 VSAM Demystified

– BWO(TYPECICS)

The TYPECICS option of the BWO parameter specifies
backup-while-open (BWO) in a DFSMStvs environment. For RLS
processing, this activates BWO processing for DFSMStvs.

– LOG(UNDO)

This specifies that changes to the sphere accessed in DFSMStvs mode
can be backed out using an external log. DFSMStvs considers the sphere
recoverable.

– LOG(ALL)

This specifies that changes to the sphere accessed in DFSMStvs mode
can be backed out and is also forward recovered using external logs.
DFSMStvs considers the sphere recoverable. LOGSTREAMID must also
be defined.

– LOGSTREAMID

This changes or adds the name of the DFSMStvs forward-recovery log
stream, for all components in the VSAM sphere.

� DEFINE ALTERNATEINDEX

The changes to this command are listed below.

– BUFFERSPACE

When you use DFSMStvs access, DFSMS ignores the BUFFERSPACE
parameter.

– CONTROLINTERVALSIZE

For DFSMStvs, specification of n*2K avoids wasting space in the coupling
facility cache structure.

– KEYRANGES

You cannot open key range data sets for RLS or DFSMStvs processing
because DFSMS no longer supports this parameter (as of V1R3).

– SHAREOPTIONS

When you use DFSMStvs access, DFSMS assumes that the value of
SHAREOPTIONS is (3,3).

– WRITECHECK

When you use DFSMStvs access, DFSMS ignores the WRITECHECK
parameter.

� DEFINE CLUSTER

Changes to the DEFINE CLUSTER are described below.
 Chapter 6. DFSMStvs 359

– BUFFERSPACE

When you use DFSMStvs access, DFSMS ignores the BUFFERSPACE
parameter.

– BWO(TYPECICS)

The TYPECICS option of the BWO parameter specifies
backup-while-open (BWO) in a DFSMStvs environment. For RLS
processing, this activates BWO processing for DFSMStvs.

– CONTROLINTERVALSIZE

For DFSMStvs, specification of n*2K avoids wasting space in the coupling
facility cache structure.

– KEYRANGES

You cannot open key range data sets for RLS or DFSMStvs processing,
because DFSMS no longer supports this parameter (as of V1R3).

– LOG(UNDO)

This specifies that changes to the sphere accessed in DFSMStvs mode
can be backed out using an external log. DFSMStvs considers the sphere
recoverable.

– LOG(ALL)

This specifies that changes to the sphere accessed in DFSMStvs mode
can be backed out and it is also forward recovered using external logs.
DFSMStvs considers the sphere recoverable. LOGSTREAMID must also
be defined. If you use LOG(NONE), DFSMStvs considers the sphere to be
nonrecoverable.

– LOGSTREAMID

Changes or adds the name of the DFSMStvs forward-recovery log stream,
for all components in the VSAM sphere.

– SHAREOPTIONS

When you use DFSMStvs access, DFSMS assumes that the value of
SHAREOPTIONS is (3,3).

– WRITECHECK

When you use RLS or DFSMStvs access, DFSMS ignores the
WRITECHECK parameter.

� DEFINE PATH

Here are the changes to the DEFINE PATH command.

– NOUPDATE

This has the same meaning for DFSMStvs as it does for RLS.
360 VSAM Demystified

� SHCDS

Here are the changes to the SHCDS command.

– LISTDS

A new, optional JOBS keyword returns a list of the jobs that currently
access the data set in DFSMStvs mode.

– LISTSHUNTED

This lists information about work that was shunted due to an inability to
complete a syncpoint (commit or backout) for a data set, a unit of recovery,
or all shunted units of recovery.

– PURGE

This discards log entries and releases the associated locks, for use when
a data set is damaged and you cannot restore it to a state that is
consistent with the log entries.

– RETRY

This retries the syncpoint; it is for use when you can restore a data set to a
state that is consistent with the log entries.

6.7.14 Messages and codes
For DFSMStvs descriptions of VSAM return and reason codes, see DFSMStvs
Administration Guide, GC26-7483.

For descriptions of new and changed DFSMSdfp messages and return and
reason codes for DFSMStvs, refer to z/OS V1R4 DFSMStvs Messages and
Codes.

For a listing of other new and changed DFSMSdfp messages and return and
reason codes, see z/OS Summary of Message Changes.

6.7.15 Macros that have been changed to support DFSMStvs
Several macros have been changed to add new subparameters in support of
DFSMStvs. Here is a list of the macros that have either changed or that you need
to understand if your application is going to be DFSMStvs enabled:

� The ACB Macro
� The GENCB Macro

Refer to this publication for detailed information: z/OS DFSMStvs Planning and
Operating Guide, SC26-7348.
 Chapter 6. DFSMStvs 361

362 VSAM Demystified

Appendix A. Sample code

This appendix contains useful JCL and code samples that can be modified and
used in your installation.

A

© Copyright IBM Corp. 2001, 2003. All rights reserved. 363

JRIO API examples
Here some examples of JRIO APIs for accessing VSAM data sets:

Locate a record by key in keyed access record file
 IKeyedAccessRecordFile karf =
 new KeyedAccessRecordFile("//JOE.KSDS",
 ; JRIO_READ_MODE);
 IRecordFile index = karf.getPrimaryIndex();
 karf.positionForward(index, key);
 karf.read(index, buffer);
 karf.close();

Position to a record in a random access record file
 IRandomAccessRecordFile rarf =
 new RandomAccessRecordFile("//JOE.KSDS",
 ; JRIO_READ_MODE);

 rarf.read(buffer); // reads the first record (record 0)

 rarf.positionLast();
 rarf.positionPrev();
 rarf.read(buffer); // reads the last record (record n-1)

 rarf.positionFirst();
 rarf.positionNext();
 rarf.read(buffer); // reads the second record (record 1)

 rarf.seek(5L);
 rarf.read(buffer); // reads the sixth record (record 5)

 rarf.close();

Read a record from a keyed access record file
 IKeyedAccessRecordFile karf =
 new KeyedAccessRecordFile("//JOE.KSDS");
 IRecordFile index = karf.getPrimaryIndex();
 // or: IRecordFile index =
 // karf.getAlternateIndex("//JOE.KSDS.AIX");

 byte[] buffer = new byte[JRIO_MAX_RECORD_LENGTH];

 for(;;)
364 VSAM Demystified

 {
 // optional: karf.positionForward(key);
 // or: karf.positionForwardGE(key);
 int bytesRead = karf.read(index, buffer);

 if (bytesRead != JRIO_READ_EOF)
 {
 // process(buffer);
 }
 else
 {
 break;
 }
 }
 karf.close();

Read a record from a random access record file
IRandomAccessRecordFile rarf =
 new RandomAccessRecordFile("//JOE.SEQ");

 byte[] buffer = new byte[JRIO_MAX_RECORD_LENGTH];

 for(;;)
 {
 // rarf.seek(recNo);
 int bytesRead = rarf.read(buffer);

 if (bytesRead != JRIO_READ_EOF)
 {
 // process(buffer);
 }
 else
 {
 break;
 }
 }
 rarf.close();

Update a record in a keyed access record file
 IKeyedAccessRecordFile karf =
 new KeyedAccessRecordFile("//JOE.KSDS",
 ; JRIO_READ_WRITE_MODE);
 IRecordFile index = karf.getPrimaryIndex();
 karf.read(index, buffer);
 // modify non-key field(s) in buffer
 Appendix A. Sample code 365

 karf.update(index, buffer);
 karf.close();

Accessing the VSAM Shared Information (VSI)
You can code the following instructions to get the length and address of VSI the
data to be sent to anotherOS/390 image:

� Load ACB address into register RY.

� To locate the VSI for a data component:

L RX,04(,RY) Put AMBL address into register RX

L 1,52(,RX) Get data AMB address

L 1,68(,1) Get VSI address

LH 0,62(,1) Load data length

LA 1,62(,1) Point to data to be communicated

� To locate the VSI information for an index component of a key-sequenced
data set:

L RX,04(,RY) Put AMBL address into register RX

L 1,56(,RX) Get index AMB address

L 1,68(,1) Get VSI address

LH 0,62(,1) Load data length

LA 1,62(,1) Point to data to be communicated

Similarly, the location of the VSI on the receiving processor can be located. The
VSI level number must be incremented in the receiving VSI to inform the
receiving processor that the VSI has changed. To update the level number,
assuming the address of the VSI is in register 1:

LA 0,1 Place increment into register 0

AL 0,64(,1) Add level number to increment

ST 0,64(,1) Save new level number

All processing of the VSI must be protected by using ENQ/DEQ to prevent
simultaneous updates to the transmitted data.
366 VSAM Demystified

Sample programs extract from SMF record type 64
In this section we provide two sample programs:

1. SMF64 that helps you identify VSAM data sets with heavy access and good
candidates for SMB.

2. SMFLSR helps you identify VSAM data sets opened in LSR mode. Once they
are identified, you can use the data set names as input to IBM tool to see the
probable change in CIsize with the new CI size calculation algorithm.

SMF64 sample code
The sample in Example A-1 can be used to find more information about jobs
using heavily VSAM data sets. It is based on SMF record type 64 issued when
data set component is closed.

See the documentation inside the Example A-1 for:

� The parms you can use to extract information
� The JCL you use to extract SMF records from SYS1.MAN*
� The JCL to execute the sample program
� The report description fields

Example: A-1 SMF64 sample code

//*--*
//* JCL: *
//* //RELAT EXEC PGM=SMF64,PARM=SEE_BELOW *
//* //STEPLIB DD DSN=LOAD_LIBRARY,DISP=SHR *
//* //SMF DD DISP=SHR,DSN=QSAM_SMFDUMP *
//* //REPORT DD SYSOUT=*,LRECL=133 *
//* *
//* THE PARM IS OPTIONAL: DEFAULT(EXCP=10000) *
//* ==> YOU CAN USE **ONLY** 1 OF 3 LISTED BELOW *
//* DSN=DATA_SET_NAME *
//* LISTS INFORMATION ABOUT VSAM DATA SETS WHOSE NAME BEGINS *
//* WITH "DATA_SET_NAME". *
//* EX.: ’DSN=MY.DATA’ LISTS INFORMATION ABOUT ALL VSAM DATA *
//* BEGINING WITH MY.DATA* *
//* EX.: ’DSN=MY.DATA ’ LIST ONLY DATA SET MY.DATA *
//* *
//* JOB=MYJOB *
//* LISTS ACCESS TO VSAM DATA SETS DONE BY ALL JOBS MYJOB* *
//* EX: PARM=’JOB=MY.JOB’ LIST ALL JOBS MYJOB* *
//* EX: PARM=’JOB=MYJOB ’ LIST ONLY ABOUT MYJOB *
//* *
//* EXCP=MAX_6_BYTES LIST ONLY FOR DATA SET WITH EXCP>=PARM_EXCP *
//* *
 Appendix A. Sample code 367

//* ==> YOU CAN A DATE AND/OR AN INTERVAL TO LIST *
//* JD=AADDD JULIAN DATE *
//* BH=HH INTERVAL BEGINING HOUR *
//* EH=HH INTERVAL FINAL HOUR *
//* *
//* EXAMPLES: *
//* PARM=’DSN=XXX,BH=07,EH=10’ *
//* PARM=’DSN=XXX,JD=02360’ *
//* PARM=’EXCP=NNNN’ *
//* PARM=’JOB=JJJ,JD=02360,BH=07,EH=07’ (FROM 07:00 TO 07:59) *
//* --- *
//* --- *
//* JCL: DUMP SMF 64 RECORD FROM SYS1.MAN *
//* //STEP1 EXEC PGM=IFASMFDP
//* //INDD DD DISP=SHR,DSN=SYS1.MAN?????
//* //DUMPOUT DD DSN=QSAM_SMFDUMP_TYPE64,DISP=(,CATLG),
//* // SPACE=(CYL,(10,10),RLSE),RECFM=VBS,UNIT=SYSDA
//* //SYSPRINT DD SYSOUT=A
//* //SYSIN DD *
//* INDD(INDD,OPTIONS(DUMP))
//* OUTDD(DUMPOUT,TYPE(64:64)) *
//* *
//* REPORT DESCRIPTION *
//* XF=EXTENDED FORMAT DATA SET N-XF(NON EXTENDED FORMAT) *
//* XP=COMPRESSED FORMAT DATA SET N-XP(NON COMPRESSED) *
//* XA=EXTENDED ADDRESSABLE DATA SET N-XA(NON EXTENDED ADDRESSAB.) *
//* INSERT,DELETE,READ,UPDATE,GET, EXCP, CA AND CI SPLITS ARE FROM *
//* OPEN TO CLOSE (ARE NOT ACCUMULATED) *
//* ACCESS BY; KEY, RBA, SEQ, DIR, SKIP *
//* PROCESSING OPTIONS: *
//* CNV: CONTROL INTERVAL ACCESS *
//* IN: INPUT *
//* OUT: OUTPUT *
//* ICI: IMPROVED CONTROL INTERVAL PROCESSING *
//* DW: DEFERRED WRITE *
//* SIS: SEQUENTIAL INSERT STRATEGY *
//* UB: USER MANAGED BUFFERING *
//* CBSHR: VSAM STRUCTURE CONTROL BLOCK SHARED *
//* CBFIX: VSAM CONTROL BLOCKS AND BUFFERS FIXED IN REAL STORAGE *
//* BUFFERING MANAGEMENT: LSR, GSR, NSR, RLS *
//* BUFF31: 31-BIT ADDRESSING MODE FOR BUFFERS *
//* BUFF24: 24-BIT ADDRESSING MODE FOR BUFFERS *
//* SMB: OPTIMIZATION USED:DO,DW,SO,SW,(OR CO,CR WHEN LOAD) *
//* VSP: USER SPECIFIED AMOUNT OF VIRTUAL STORAGE THRU SMBVSP *
//* HWT: USER SPECIFIED HIPERSPACE BUFFER SMBHWT *
//* BUFF31: SMB USED 31-BIT ADDRESSING MODE FOR BUFFERS *
//* CB31: SMB USED 31-BIT ADDRESSING MODE FOR CONTROL BLOCKS *
//* IR: INSUFFICIENT VIRTUAL STORAGE FOR DO PROCESSING *
//*--*
368 VSAM Demystified

//COMP EXEC ASMACL,DPRTY=9,
// PARM.L=’LIST,LET,XREF,MAP,AMODE=31,RMODE=24’
//C.SYSLIB DD DISP=SHR,DSN=SYS1.MACLIB
//C.SYSIN DD *
 TITLE ’ SMF - RECORD TYPE 64 - VSAM STATS’
SMF64 CSECT
SMF64 AMODE 31
SMF64 RMODE 24
 STM R14,R12,12(R13) * LINKAGE CONVENTION
 LR R12,R15 * R12 BASE
 USING SMF64,R12
 LA R15,SAVE
 ST R15,8(R13)
 ST R13,SAVE+4
 LR R13,R15
 L R7,LIM_EXCP * DEFAULT EXCPS
 LA R6,RECORD * REPORT MAPPING
 L R5,0(R1) * PARM
 LH R4,0(R5) * LENGTH
 LTR R4,R4 * NO PARM?
 BZ DO_OPEN * YES, USE DEFAULT
 BCTR R4,0 * -1 EXECUTE
 LA R5,2(,R5) *
 LA R14,DO_OPEN
SEARCHP EX R4,TRT_PARM
 BNZ CALC_LEN
 LR R1,R4
 LA R4,0
 B ID_PARM
*
CALC_LEN LA R8,1(,R1)
 SR R1,R5
 SR R4,R1
 BCTR R1,0
 BAS R14,ID_PARM
 LTR R4,R4
 BZ DO_OPEN
 LR R5,R8
 BCTR R4,0
 B SEARCHP
*
ID_PARM CLC 0(4,R5),=C’DSN=’
 BNE PARMJOB
 LA R3,4
 SR R1,R3
 BZR R14
 LR R11,R1
 EX R1,MVDSN
 OI FLAG,X’01’ * SELECT BY DSN
 Appendix A. Sample code 369

 MVI TIT_OPT,X’40’
 MVC TIT_OPT+1(L’TIT_OPT-1),TIT_OPT
 MVC TIT_OPT(4),=C’DSN:’
 MVC TIT_OPT+4(L’RDSN),RDSN
 BR R14
*
PARMJOB CLC 0(4,R5),=C’JOB=’
 BNE PARMEXCP
 LA R3,4
 SR R1,R3
 BNPR R14
 LR R11,R1
 EX R1,MVJOBN
 OI FLAG,X’02’ * SELECT BY JOBN
 MVI TIT_OPT,X’40’
 MVC TIT_OPT+1(L’TIT_OPT-1),TIT_OPT
 MVC TIT_OPT(8),=C’JOBNAME:’
 MVC TIT_OPT+9(L’RJOB),RJOB
 BR R14
*
PARMEXCP CLC 0(5,R5),=C’EXCP=’
 BNE PARMJD
 LA R3,5
 SR R1,R3
 BNPR R14
 MVI T_EXCP,X’40’
 MVC T_EXCP+1(L’T_EXCP-1),T_EXCP
 EX R1,MVEXCP
 EX R1,PACK
 CVB R7,DOUBLE
 ST R7,LIM_EXCP
 BR R14
*
PARMJD CLC 0(3,R5),=C’JD=’
 BNE PARMBH
 LA R3,7
 CR R1,R3
 BNER R14 * INVALID. IGNORES
 PACK DATAJ,3(5,R5)
 OI DATAJ+3,X’0F’
 OI FLAG,X’04’
 BR R14
*
PARMBH CLC 0(3,R5),=C’BH=’
 BNE PARMEH * INVALID, IGNORES
 LA R3,4
 CR R1,R3
 BNER R14 * INVALID. IGNORES
 TM 3(R5),X’F0’
370 VSAM Demystified

 BNOR R14
 TM 4(R5),X’F0’
 BNOR R14
 PACK DOUBLE,3(2,R5)
 CVB R3,DOUBLE
 LTR R3,R3
 BZR R14
 M R2,F3600 * SECONDS
 M R2,F100 * SECONDS * 100
 ST R3,T_INIT
 OI FLAG,X’08’ * FLAG INITIAL INTERVAL
 BR R14
*
PARMEH CLC 0(3,R5),=C’EH=’
 BNER R14
 LA R3,4
 CR R1,R3
 BNER R14 * INVALID. IGNORES
 TM 3(R5),X’F0’
 BNOR R14
 TM 4(R5),X’F0’
 BNOR R14
 PACK DOUBLE,3(2,R5)
 CVB R3,DOUBLE
 LTR R3,R3
 BZR R14
 LA R3,1(,R3) * HOUR LIMIT FOR COMPARATION
 M R2,F100 *
 M R2,F3600 * SECONDS * 100
 BCTR R3,0 *
 ST R3,T_FIM
 OI FLAG,X’80’ * FINAL INTERVAL FLAG
 BR R14
*
DO_OPEN OPEN (SMFDUMP,,REC,(OUTPUT))
 LTR R15,R15
 BNZ ABEND
 LA R8,0 * TITLE CONTROL
NUMLIN LA R9,55 * 55 LINES PER PAGE
READ GET SMFDUMP
 LR R10,R1 * IDASMF64
 USING SMFRCD64,R10
 CLC SMF64LEN,HDUMP
 BNH READ
 CLI SMF64RTY,64 * 64?
 BNE READ
 CLI 2(R10),X’00’
 BNE READ
 TM SMF64RIN,X’80’ * COMPONENT CLOSE?
 Appendix A. Sample code 371

 BZ READ
 TM SMF64DTY,X’80’ * DATA SET?
 BNO READ
 LA R1,0
 ICM R1,B’0011’,SMF64ESL
 LA R15,0(R1,R10)
 TM FLAG,X’01’ * DSN?
 BO PR_DSN
 TM FLAG,X’02’ * JOB?
 BNO PR_EXCP
*
PR_JOB EQU *
 EX R11,CPJOB * JOBNAME MATCHES?
 BNE READ
 B COMMON
*
PR_DSN EQU *
 EX R11,CPDSN * DSN MATCHES?
 BNE READ
 B COMMON
*
PR_EXCP EQU *
 DROP R10
 USING SMFRCD64,R15
 L R3,SMF64DEP EXCP FOR DATA SET
 CR R3,R7 COMPARE WITH LIMIT
 BL READ
 B COMMON
 DROP R15
*
COMMON DS 0H
 USING SMFRCD64,R10 SMF RECORD MAPPING
 MVC R_SYSID,SMF64SID SYSID
 MVC R_JOB,SMF64JBN JOBNAME
 TM FLAG,X’04’ DATE?
 BNO MV_DATA
 CP SMF64DTE+1(3),DATAJ+1(3) COMPARE DATE
 BNE READ
MV_DATA UNPK DATA,SMF64DTE
 TM FLAG,X’88’ INTERVAL SELECTION?
 BNO MV_TME IGNORES IF NOT COMPLETE INTERVAL
 CLC SMF64TME,T_INIT
 BL READ
 CLC SMF64TME,T_FIM
 BH READ
MV_TME ICM R3,B’1111’,SMF64TME
 L R1,F100
 LA R2,0
 DR R2,R1 * SECONDS
372 VSAM Demystified

 L R1,F3600 * SECONDS IN HOURS
 LA R2,0
 DR R2,R1 * HOUR EM R3
 CVD R3,DOUBLE
 UNPK HH,DOUBLE+6(2)
 OI HH+1,X’F0’
 L R1,F60
 LR R3,R2 * REMAINING
 LA R2,0
 DR R2,R1 * MINUTS
 CVD R3,DOUBLE
 UNPK MM,DOUBLE+6(2)
 OI MM+1,X’F0’
 CVD R2,DOUBLE * REMAINING SECOUNDS
 UNPK SS,DOUBLE+6(2)
 OI SS+1,X’F0’
 LA R4,R_ACCESS
 TM SMF64DTY,X’20’ EXTENDED FORMAT?
 BNO N_XF DOES NOT USES EXT FACILITIES
 MVC 0(L’XF,R4),XF
 LA R4,L’XF+1(,R4)
 TM SMF64DTY,X’10’ * COMPRESSED?
 BNO IF_XA NO. JUMP
 MVC 0(2,R4),=C’XP’ SET COMPRESSED
 LA R4,3(,R4)
IF_XA TM SMF64DTY,X’02’ EXTENDED ADDRESS DATA SET?
 BNO N_XA
 MVC 0(L’XA,R4),XA SET EXTENDED ADDRESSABILITY
 LA R4,L’XA+1(,R4)
 B IF_RLS
*
N_XF MVC 0(L’NXF,R4),NXF SET NON EXTENDED FORMAT
 LA R4,L’NXF+1(,R4)
*
N_XA MVC 0(L’NXA,R4),NXA SET NON EXTENDED ADDRESS DATA
 LA R4,L’NXA+1(,R4)
IF_RLS TM SMF64DTY,X’08’ RECORD LEVEL SHARED?
 BNO M_EXCP
 MVC 0(L’RLS,R4),RLS SET RLS
 LA R4,L’RLS+1(,R4)
*
 DROP R10
 USING SMFRCD64,R15
*
M_EXCP L R3,SMF64DEP EXCPS
 CVD R3,DOUBLE ZONED DECIMAL
 MVC EXCPS,MODEL
 ED EXCPS,DOUBLE+2
 MVC R_DDN,SMF64DDN * DDNAME
 Appendix A. Sample code 373

 MVC R_DSN,SMF64CLN * CLUSTER NAME
 L R3,SMF64DIN * INSERTIONS
 CVD R3,DOUBLE
 MVC INSERT,MODEL
 ED INSERT,DOUBLE+2
 L R3,SMF64DDE * RECORDS DELETED
 CVD R3,DOUBLE
 MVC DELETE,MODEL
 ED DELETE,DOUBLE+2
 L R3,SMF64DUP * RECORDS UPDATED
 CVD R3,DOUBLE
 MVC UPDATE,MODEL
 ED UPDATE,DOUBLE+2
 L R3,SMF64DRE * RECORDS RETRIEVED
 CVD R3,DOUBLE
 MVC READS,MODEL
 ED READS,DOUBLE+2
 L R3,SMF64DCS * CONTROL INTERVAL SPLITS
 CVD R3,DOUBLE
 MVC CI_SPLIT,MODEL
 ED CI_SPLIT,DOUBLE+2
 L R3,SMF64DAS * CONTROL AREA SPLITS
 CVD R3,DOUBLE
 MVC CA_SPLIT,MODEL
 ED CA_SPLIT,DOUBLE+2
 TM SMF64MC1,X’80’ * KEY ACCESS?
 BNO IF_RBA
 MVC 0(3,R4),=C’KEY’
 LA R4,4(R4)
 B TYPEACC
*
IF_RBA TM SMF64MC1,X’40’ * RBA?
 BNO IF_CI
 MVC 0(3,R4),=C’RBA’
 LA R4,4(R4)
 B TYPEACC
*
IF_CI TM SMF64MC1,X’20’ * ACCESS BY CONTROL INTERVAL?
 BNO TYPEACC
 MVC 0(3,R4),=C’CNV’
 LA R4,4(R4)
 B TYPEACC
*
TYPEACC TM SMF64MC1,X’10’ * SEQUENTIAL ACCESS?
 BNO IF_DIR
 MVC 0(3,R4),=C’SEQ’
 LA R4,4(R4)
*
IF_DIR TM SMF64MC1,X’08’ * DIRECT?
374 VSAM Demystified

 BNO IF_INP
 MVC 0(3,R4),=C’DIR’
 LA R4,4(R4)
IF_INP TM SMF64MC1,X’04’ * INPUT?
 BNO IF_OUT
 MVC 0(2,R4),=C’IN’
 LA R4,3(R4)
*
IF_OUT TM SMF64MC1,X’02’ * OUTPUT?
 BNO IF_UBUF
 MVC 0(3,R4),=C’OUT’
 LA R4,4(R4)
IF_UBUF TM SMF64MC1,X’01’ * USER MANAGED BUFFERING
 BNO MC2
 MVC 0(2,R4),=C’UB’
 LA R4,3(R4)
MC2 TM SMF64MC2,X’10’ SKIP SEQUENTIAL?
 BNO IF_CBS
 MVC 0(4,R4),=C’SKIP’
 LA R4,5(R4)
IF_CBS TM SMF64MC2,X’02’ SHARED CONTROL BLOCKS?
 BNO IF_LSR
 MVC 0(5,R4),=C’CBSHR’
 LA R4,6(R4)
IF_LSR TM SMF64MC3,X’40’ LSR?
 BNO IF_GSR
 MVC 0(3,R4),=C’LSR’
 LA R4,4(R4)
 B IF_DW
*
IF_GSR TM SMF64MC3,X’20’ GSR
 BNO IF_ICI
 MVC 0(3,R4),=C’GSR’
 LA R4,4(R4)
 B IF_DW
*
IF_ICI TM SMF64MC3,X’10’ IMPROVED CONTROL-INTERVAL
 BNO NSR
 MVC 0(3,R4),=C’ICI’
 LA R4,4(R4)
 B IF_DW
*
NSR MVC 0(3,R4),=C’NSR’
 LA R4,4(R4)
*
IF_DW TM SMF64MC3,X’08’ DEFERRED-WRITE?
 BNO IF_SIS
 MVC 0(2,R4),=C’DW’
 LA R4,3(R4)
 Appendix A. Sample code 375

IF_SIS TM SMF64MC3,X’04’ SEQUENTIAL INSERT STRATEGY?
 BNO IF_FIX
 MVC 0(3,R4),=C’SIS’
 LA R4,4(R4)
*
IF_FIX TM SMF64MC3,X’02’ CB FIXED IN REAL?
 BNO IF_BUFF
 MVC 0(5,R4),=C’CBFIX’
 LA R4,6(R4)
*
IF_BUFF MVC 0(6,R4),BUFF31
 TM SMF64MC3,X’01’ BUFFERS ABOVE?
 BO IF_SMB
 MVC 0(6,R4),BUFF24
IF_SMB LA R4,7(,R4)
 TM SMF64SMB,X’80’ SMB USED?
 BNO PUTREC
 MVC 0(3,R4),=C’SMB’
 LA R4,4(,R4)
 TM SMF64SMB,X’02’ LOAD OPTIMIZED FOR SPEED?
 BNO IF_CR
 MVC 4(2,R4),=C’CO’
 B IF_DO
IF_CR TM SMF64SMB,X’01’ LOAD OPTIMIZED FOR RECOVERY?
 BNO IF_CR
 MVC 4(2,R4),=C’CR’
IF_DO LA R4,3(,R4)
 TM SMF64SMB,X’20’ DO BIAS USED?
 BNO IF_SO
 MVC 4(2,R4),=C’DO’
 B IF_VSP
IF_SO TM SMF64SMB,X’10’ SO BIAS USED?
 BNO IF_SW
 MVC 4(2,R4),=C’SO’
 B IF_VSP
IF_SW TM SMF64SMB,X’08’ SW BIAS USED?
 BNO IF_DFW
 MVC 4(2,R4),=C’SW’
 B IF_VSP
IF_DFW TM SMF64SMB,X’04’ DW BIAS USED?
 BNO IF_VSP
 MVC 4(2,R4),=C’DW’
 B TM_VSP
IF_VSP LA R4,3(,R4)
TM_VSP TM SMF64RSC,X’80’ AMOUNT OF VIRTUAL BUFFER INFORMED
 BNO IF_HWT
 MVC 0(3,R4),VSP
 LA R4,4(,R4)
IF_HWT TM SMF64RSC,X’40’ USED HIPERSPACE BUFFERS?
376 VSAM Demystified

 BNO IF_RE31
 MVC 0(3,R4),HWT
 LA R4,4(,R4)
IF_RE31 TM SMF64RSC,X’20’ RMODE31=BUFF USED
 BNO IF_CB31
 MVC 0(7,R4),BUFF31
IF_CB31 TM SMF64RSC,X’10’ RMODE31=CB USED
 BNO IF_878
 MVC 0(5,R4),CB31
IF_878 TM SMF64RSC,X’10’ RMODE31=CB USED
 BNO PUTREC
 MVC 0(5,R4),IREG
*
PUTREC LTR R8,R8 TITLE?
 BNZ GR_REC
 PUT REC,TIT
 PUT REC,CAB
 LA R8,15
GR_REC PUT REC,RECORD
 PUT REC,REGL2
 PUT REC,REGL3
 MVI R_ACCESS,C’ ’
 MVC R_ACCESS+1(L’R_ACCESS-1),R_ACCESS
 BCT R9,READ
 PUT REC,TIT
 PUT REC,CAB
 B NUMLIN
 DROP R15
*
GOBACK CLOSE (SMFDUMP,,REC)
 SVC 3
ABEND LR R7,R15
 WTO ’OPEN ERROR’,ROUTCDE=11
 ABEND 1000,DUMP,STEP
*

* EXECUTE INSTRUCTIONS

MVDSN MVC RDSN(0),4(R5)
MVJOBN MVC RJOB(0),4(R5)
MVEXCP MVC T_EXCP(0),5(R5)
PACK PACK DOUBLE,5(0,R5)
 USING SMFRCD64,R10
CPJOB CLC RJOB(0),SMF64JBN
 DROP R10
 USING SMFRCD64,R15
CPDSN CLC RDSN(0),SMF64CLN
 DROP R15
TRT_PARM TRT 0(0,R5),TBVIRG
 Appendix A. Sample code 377

* DCBS

SMFDUMP DCB DSORG=PS,EODAD=GOBACK,MACRF=(GL),DDNAME=SMF
REC DCB DSORG=PS,MACRF=(PM),DDNAME=REPORT,LRECL=133

* WORK AREA

SAVE DC 18F’0’ LINKAGE CONVENTION AREA
SPANNED DC F’0’
DOUBLE DS D
LIM_EXCP DC F’10000’
HDUMP DC H’18’ SKIP DUMP AND TRAILER SMF RECORD
F3600 DC F’3600’
F100 DC F’100’
F60 DC F’60’
FLAG DC X’00’
TIT DC 134C’ ’
 ORG TIT
 DC C’1’
 ORG TIT+10
 DC C’VSAM - ACCESS STATISTICS ’
TITEXCP DC C’EXCP COUNT >= ’
T_EXCP DC C’10000 ’
 ORG TIT+36
TIT_OPT DS CL54
 ORG ,
CAB DS 0CL134
 DC 134C’ ’
 ORG CAB+1
 DC C’JOBNAME’
 DS CL2
 DC C’DATA SET NAME’
 DS CL32
 DC C’DDNAME’
 DS CL3
 DC C’SYS’
 DS CL2
 DC C’TIMESTAMP’
 DS CL6
 DC C’MISCELLANEOUS: ACCESS, STATS SINCE LAST OPEN’
 ORG ,
 DS 0F
RECORD DS 0CL134
 DC 134C’ ’
 ORG RECORD+1
R_JOB DS CL8
 DS CL1
R_DSN DS CL44
378 VSAM Demystified

 DS CL1
R_DDN DS CL8
 DS CL1
R_SYSID DS CL4
 DS CL1
R_STAMP DS 0CL14
DATA DS CL5
 DS CL1
HH DS CL2
 DC C’:’
MM DS CL2
 DC C’:’
SS DS CL2
 ORG ,
REGL2 DS 0CL134
 DC 134C’ ’
 ORG REGL2+1
 DC C’EXCPS:’
EXCPS DS CL12
 DS CL1
R_ACCESS DS CL114
 ORG ,
REGL3 DS 0CL134
 DC 134C’ ’
 ORG REGL3+1
 DC C’INSERTS:’
INSERT DS CL12
 DS CL1
 DC C’DELETES:’
DELETE DS CL12
 DS CL1
 DC C’UPDATES:’
UPDATE DS CL12
 DS CL1
 DC C’READ:’
READS DS CL12
 DS CL1
 DC C’CI-SPLIT:’
CI_SPLIT DS CL12
 DS CL1
 DC C’CA-SPLIT:’
CA_SPLIT DS CL12
 ORG ,
MODEL DC X’402020202020202020202120’
RDSN DS 0CL44
 DC 44C’ ’
RJOB DS 0CL8
 DC 8C’ ’
NXF DC CL4’N-XF’
 Appendix A. Sample code 379

 ORG NXF+2
XF DS CL2
 ORG ,
NXA DC CL4’N-XA’
 ORG NXA+2
XA DS CL2
 ORG ,
RLS DC C’RLS’
DATAJ DS XL4
 DS 0F
T_INIT DS X’00000000’
T_FIM DS X’00000000’
BUFF31 DC C’BUFF31’
BUFF24 DC C’BUFF24’
CB31 DC C’CB31’
VSP DC C’VSP’
HWT DC C’HWT’
IREG DC C’IR’
TBVIRG DC 256X’00’
 ORG TBVIRG+C’,’
 DC X’01’
 ORG ,

* DUMMIES E EQUATES

 LTORG
 YREGS
 DSECT
 IDASMF64
 END SMF64
//*--*
//L.SYSLMOD DD DISP=SHR,DSN=LOAD_LIBRARY
//L.SYSLIB DD DISP=SHR,DSN=LOAD_LIBRARY
//L.SYSIN DD *
 ENTRY SMF64
 NAME SMF64(R)
/*

SMFLSR sample program
Since z/OS V1 R3, the algorithm to calculate the minimum index CI size
changed. The assembler sample code in Example A-2 helps you identify the
VSAM data sets opened in LSR mode. With the change in calculation, you can
face problems when:

� Under CICS, if you are explicitly coding the number of buffers of each size in
the LSRPOOL, two things can happen:
380 VSAM Demystified

– The amount of buffers for the new size is not enough leading to
performance problems

– Buffers for the new index CI size do not exist causing the open to fail. The
buffer size must be the same size of the index CI size or larger.

� Under other applications, when the CI index size buffer is defined in BLDVRP
and is lower than the new index CI size calculation.

Example: A-2

//*--*
//* JCL: *
//* //RELAT EXEC PGM=SMFLSR *
//* //STEPLIB DD DSN=LOAD_LIBRARY,DISP=SHR *
//* //SMF DD DISP=SHR,DSN=QSAM_SMFDUMP *
//* //REPORT DD SYSOUT=*,LRECL=133 *
//* *
//* REPORT DESCRIPTION: *
//* SYSID JOBNAME DDNAME DATASET NAME CI-SIZE KEY-LENGTH *
//* *
//* RETURN CODES: *
//* 0 - FOUND DATA SETS IN LSR MODE *
//* 4 - NO FOUND *
//*==*
//* *
//* JCL: DUMP SMF 64 RECORD FROM SYS1.MAN *
//* *
//* //STEP1 EXEC PGM=IFASMFDP *
//* //INDD DD DISP=SHR,DSN=SYS1.MAN????? *
//* //DUMPOUT DD DSN=QSAM_SMFDUMP_TYPE64,DISP=(,CATLG), *
//* // SPACE=(CYL,(10,10),RLSE),RECFM=VBS,UNIT=SYSDA *
//* //SYSPRINT DD SYSOUT=A *
//* //SYSIN DD * *
//* INDD(INDD,OPTIONS(DUMP)) *
//* OUTDD(DUMPOUT,TYPE(64:64)) *
//* *
//*--*
//COMP EXEC ASMACL,DPRTY=9,
// PARM.L='LIST,LET,XREF,MAP,AMODE=31,RMODE=24'
//C.SYSLIB DD DISP=SHR,DSN=SYS1.MACLIB
//C.SYSIN DD *
 TITLE ' SMF - RECORD TYPE 64 - VSAM OPEN FOR LSR MODE'
SMFLSR CSECT
SMFLSR AMODE 31
SMFLSR RMODE 24
 STM R14,R12,12(R13) * LINKAGE CONVENTION
 LR R12,R15 * R12 BASE
 USING SMFLSR,R12
 LA R15,SAVE * END SAVE DESTE PGM
 Appendix A. Sample code 381

 ST R15,8(R13)
 ST R13,SAVE+4 * SALVA END SAVE ANTERIOR
 LR R13,R15
 LA R6,4 * RC NOT FOUND
DO_OPEN OPEN (SMFDUMP,,REC,(OUTPUT))
 LTR R15,R15
 BNZ ABEND
SET_TIT LA R8,0 * TITLE CONTROL
 LA R9,66 * 66 LINES PER PAGE
READ GET SMFDUMP
 LR R10,R1 * IDASMF64
 USING SMFRCD64,R10
 CLC SMF64LEN,HDUMP
 BNH READ
 CLI SMF64RTY,64 * 64?
 BNE READ
 CLI 2(R10),X'00' * DISCARD SPANNED RECORDS
 BNE READ
 TM SMF64RIN,X'E0' * CLOSE,VOL SWITCH,OUT OF SPACE
 BZ READ * NO. DISCARD
 TM SMF64DTY,X'40' * INDEX?
 BNO READ * NO.DISCARD
 LA R1,0
 ICM R1,B'0011',SMF64ESL
 LA R15,0(R1,R10)
 DROP R10
 USING SMFRCD64,R15
 TM SMF64MC3,X'40' LSR?
 BNO READ NO, DISCARD
 TM SMF64SMB,X'80' SMB USED?
 BO READ YES. DISCARD. SMB BUILDS BUFFER POOL
 DROP R15 ACCORDING TO CISIZE
*
 USING SMFRCD64,R10 SMF RECORD MAPPING
 MVC R_SYSID,SMF64SID SYSID
 MVC R_JOB,SMF64JBN JOBNAME
*
 DROP R10
 USING SMFRCD64,R15
*
 MVC R_DDN,SMF64DDN * DDNAME
 MVC R_DSN,SMF64CLN * CLUSTER NAME
 L R3,SMF64DCI * CI-SIZE
 CVD R3,DOUBLE
 MVC R_CI,MODEL
 ED R_CI,DOUBLE+4
 LA R3,0
 ICM R3,B'0011',SMF64DKL * KEY-SIZE
 CVD R3,DOUBLE
382 VSAM Demystified

 MVC R_KEY,MODEL+4
 LTR R8,R8 TITLE?
 BNZ GR_REC
 PUT REC,TIT
 PUT REC,CAB
 LA R8,15
GR_REC PUT REC,RECORD
 LA R6,0
 BCT R9,READ
 B SET_TIT
 DROP R15
*
GOBACK CLOSE (SMFDUMP,,REC)
 LR R15,R6 RETURN CODE
 L R13,SAVE+4 LINKAGE CONVENTION
 L R14,12(R13)
 LM R0,R12,20(R13)
 BR R14
*
ABEND LR R7,R15
 WTO 'OPEN ERROR',ROUTCDE=11
 ABEND 1000,DUMP,STEP
*

* DCBS

SMFDUMP DCB DSORG=PS,EODAD=GOBACK,MACRF=(GL),DDNAME=SMF
REC DCB DSORG=PS,MACRF=(PM),DDNAME=REPORT,LRECL=133

* WORK AREA

SAVE DC 18F'0' LINKAGE CONVENTION AREA
SPANNED DC F'0'
DOUBLE DS D
HDUMP DC H'18' SKIP DUMP AND TRAILER SMF RECORD
TIT DC 134C' '
 ORG TIT
 DC C'1'
 ORG TIT+10
 DC C'VSAM - DATA SET WITH LSR ACCESS'
 ORG ,
CAB DS 0CL134
 DC 134C' '
 ORG CAB+1
 DC C'SYSTEM '
 DS CL2
 DC C'JOBNAME'
 DS CL3
 DC C'DDNAME'
 Appendix A. Sample code 383

 DS CL4
 DC C'DATA SET NAME'
 DS CL32
 DC C'KEY SIZE'
 DS CL2
 DC C'INDEX CI SIZE'
 ORG ,
 DS 0F
RECORD DS 0CL134
 DC 134C' '
 ORG RECORD+1
R_SYSID DS CL4
 DS CL5
R_JOB DS CL8
 DS CL2
R_DDN DS CL8
 DS CL2
R_DSN DS CL44
 DS CL1
R_KEY DS CL6
 DS CL4
R_CI DS CL6
 ORG ,
MODEL DC X'402020202120'

* DUMMIES E EQUATES

 LTORG
 YREGS
 DSECT
 IDASMF64
 END SMFLSR
//*--*
//L.SYSLMOD DD DISP=SHR,DSN=LOAD_DATA_SET
//L.SYSLIB DD DISP=SHR,DSN=LOAD_DATA_SET
//L.SYSIN DD *
 ENTRY SMFLSR
 NAME SMFLSR(R)
/*

REXX code to list compression ratio
Compression is useful when the compression rate is high, to compensate for the
CPU used to perform the compress. The compression rate depends on the data.
384 VSAM Demystified

You can use the REXX in Example A-4 to list the compress ratio for:

� All data sets (VSAM KSDS or non-VSAM) from a catalog.
� An specific data set

You can execute the REXX via:

� TSO. or
� Batch, using the JCL shown in Example A-3

Example: A-3 Sample JCL for running REXX in batch

//REXX EXEC PGM=IRXJCL,
// PARM='REXX_NAME +UCAT.VSBOX01'
//SYSTSPRT DD SYSOUT=*
//SYSEXEC DD DISP=SHR,DSN=PDS_REXX
//SYSTSIN DD DUMMY

Example: A-4

/* REXX */
/*TRACE R */
 /**/
 /* FUNCTION: */
 /* DISPLAY THE COMPRESSION RATIO FOR: */
 /* 1 - DATA SET: EXEC REXX_NAME 'DATA_SET_NAME' */
 /* OR, WHEN THE PARM IS PREFIXED BY "+": */
 /* 2 - FOR ALL COMPRESSED DATA SETS FROM A CATALOG: */
 /* EXEC REXX_NAME '+CATALOG_NAME' */
 /**/
 PARSE UPPER ARG DSN
 IF DSN = '' THEN
 DO
 SAY "NO DSN OR CATALOG INFORMED. "
 EXIT
 END
 PARSE VAR DSN '+' CAT
 IF CAT /= '' THEN DSN = '**'
 ELSE CAT = ' '
MODRSNRC = SUBSTR(' ',1,4)
CSIFILTK = SUBSTR(DSN,1,44)
CSICATNM = SUBSTR(CAT,1,44)
CSIRESNM = SUBSTR(' ',1,44)
CSIDTYPS = SUBSTR(' ',1,16)
/* OPTIONS */
CSICLDI = SUBSTR(' ',1,1)
CSIRESUM = SUBSTR(' ',1,1) /* RESUME FLAG */
CSIS1CAT = SUBSTR('Y',1,1) /* SEARCH MORE THAN 1 CATALOG */
CSIRESRV = SUBSTR(' ',1,1)
 Appendix A. Sample code 385

CSINUMEN = '0003'X

CSIFLD1 = SUBSTR('COMPIND COMUDSIZUDATASIZ',1,24)

CSIOPTS = CSICLDI || CSIRESUM || CSIS1CAT || CSIRESRV
CSIFIELD = CSIFILTK || CSICATNM || CSIRESNM || CSIDTYPS || CSIOPTS
CSIFIELD = CSIFIELD || CSINUMEN || CSIFLD1
WORKLEN = 1024
DWORK = '00000400'X || COPIES('00'X,WORKLEN-4)
FOUND = 0
NUMERIC DIGITS 16

RESUME = 'Y'

DO WHILE RESUME = 'Y'
 ADDRESS LINKPGM 'IGGCSI00 MODRSNRC CSIFIELD DWORK'
 LCC = RC
 IF LCC ¬= 0 THEN
 DO
 REASON = C2X(MODRSNRC)
 SAY 'IGGCSI00 NOT OK RC:' LCC 'REASON:' REASON
 EXIT
 END
 RESUME = SUBSTR(CSIFIELD,150,1) /* RESUME FLAG LOOP CTL */
 USEDLEN = C2D(SUBSTR(DWORK,9,4)) /* USED WORK AREA LENGTH */
 POS1=15 /* AREA INFO ENTRY */
 /**/
 /* PROCESS WORK AREA DATA */
 /**/
 DO WHILE POS1 < USEDLEN /* PROCESS WORK AREA */
 IF SUBSTR(DWORK,POS1+1,1) = '0' THEN POS1 = POS1 + 50
 ELSE
 DO
 CSIEFLAG = SUBSTR(DWORK,POS1,1)
 X = BITAND(CSIEFLAG,'20'X) /* VALID? */
 IF X /= '20'X THEN POS1 = POS1 + 50
 ELSE
 DO
 X = BITAND(SUBSTR(DWORK,POS1+56,1),'60'X)
 TOTDATA = C2D(SUBSTR(DWORK,POS1+46,2))
 IF X = '60'X THEN
 DO
 X = BITAND(SUBSTR(DWORK,POS1+57,1),'FF'X)
 IF X /= 'FF'X THEN
 DO
 FOUND = 1

DSN = SPACE(SUBSTR(DWORK,POS1+2,44),0)
 STLEN = C2D(SUBSTR(DWORK,POS1+50,2))
 NDLEN = C2D(SUBSTR(DWORK,POS1+52,2))
386 VSAM Demystified

 RDLEN = C2D(SUBSTR(DWORK,POS1+54,2))
 USIZE = C2D(SUBSTR(DWORK,POS1+65,RDLEN))
 XPRESS = C2D(SUBSTR(DWORK,POS1+57,NDLEN))

RATIO = SPACE(FORMAT((1-(XPRESS/USIZE))*100,16,2),0)
 SAY "COMPRESSION RATIO OF " DSN ": " RATIO "%"
 END
 END
 POS1 = POS1 + TOTDATA + 46
 END
 END
 END
ENDIF FOUND = 0 THEN SAY "NO COMPRESSED DATA SETS FOUND "

SMFRLS Sample program
(*)

Example: A-5

//*--*
//* FUNCTION: *
//* RLS CF STRUCTURE AND I/O STATISTICS *
//* *
//*--*
//* REPORT DESCRIPTION *
//* # OF REQUESTS WHERE DATA WAS OBTAINED FROM THE LOCAL *
//* SHARED BUFFER POOL *
//* # OF REQUESTS WHERE DATA WAS OBTAINED FROM DE CF CACHE *
//* # OF REQUESTS WHERE DATA WAS OBTAINED FROM DASD *
//* # OF UPDATES, INSERTS, DELETES, READS, SPLITS CI AND CA *
//* SYSTEM ID, JOBNAME, DATE AND TIME WHEN JOB STARTED, DDNAME AND *
//* DATA SET NAME *
//*--*
//* JCL: *
//* //RELAT EXEC PGM=SMFRLS *
//* //STEPLIB DD DSN=LOAD_LIBRARY,DISP=SHR *
//* //SMF DD DISP=SHR,DSN=QSAM_SMFDUMP *
//* //REPORT DD SYSOUT=*,LRECL=133 *
//* *
//* PARM: NO PARM USED *
//* --- *
//* JCL DUMP SMF 64 RECORD FROM SYS1.MAN *
//* //STEP1 EXEC PGM=IFASMFDP
//* //INDD DD DISP=SHR,DSN=SYS1.MAN?????
//* //DUMPOUT DD DSN=QSAM_SMFDUMP_TYPE64,DISP=(,CATLG),
//* // SPACE=(CYL,(10,10),RLSE),RECFM=VBS,UNIT=SYSDA
//* //SYSPRINT DD SYSOUT=A
//* //SYSIN DD *
 Appendix A. Sample code 387

//* INDD(INDD,OPTIONS(DUMP))
//* OUTDD(DUMPOUT,TYPE(64:64)) *
//*--*
//COMP EXEC ASMACL,DPRTY=9,
// PARM.L='LIST,LET,XREF,MAP,AMODE=31,RMODE=24'
//C.SYSLIB DD DISP=SHR,DSN=SYS1.MACLIB
//C.SYSIN DD *
 TITLE ' SMF - RECORD TYPE 64 - RLS HITS STATS'
SMFRLS CSECT
SMFRLS AMODE 31
SMFRLS RMODE 24
 STM R14,R12,12(R13) * LINKAGE CONVENTION
 LR R12,R15 * 12 BASE REGISTER
 USING SMFRLS,R12
 LA R15,SAVE
 ST R15,8(R13)
 ST R13,SAVE+4
 LR R13,R15
*
DO_OPEN OPEN (SMFDUMP,,REC,(OUTPUT))
 LTR R15,R15
 BNZ ABEND
SET_TIT LA R8,0 * TITLE CONTROL
 LA R9,14 * 60 LINES PER PAGE
READ GET SMFDUMP
 LR R10,R1 * IDASMF64
 USING SMFRCD64,R10
 CLC SMF64LEN,HDUMP
 BNH READ
 CLI SMF64RTY,64 * 64?
 BNE READ
 CLI 2(R10),X'00'
 BNE READ
 TM SMF64RIN,X'80' * COMPONENT CLOSE?
 BZ READ
 TM SMF64DTY,X'80' * DATA SET?
 BNO READ
 TM SMF64DTY,X'08' RECORD LEVEL SHARED?
 BNO READ
 USING SMFRCD64,R10 SMF RECORD MAPPING
 MVC R_SYSID,SMF64SID SYSID
 MVC R_JOB,SMF64JBN JOBNAME
 MVC R_DSN,SMF64DNM * COMPONENT NAME
MV_DATA UNPK DATE,SMF64RSD JOB START DATE (JULIAN)
MV_TME ICM R3,B'1111',SMF64RST TIME HUNDREDTHS OF SECONDS
 L R1,F100 SINCE MIDNIGHT
 LA R2,0
 DR R2,R1 * SECONDS
 L R1,F3600 * SECONDS IN HOURS
388 VSAM Demystified

 LA R2,0
 DR R2,R1 * HOUR EM R3
 CVD R3,DOUBLE
 UNPK HH,DOUBLE+6(2)
 OI HH+1,X'F0'
 L R1,F60
 LR R3,R2 * REMAINING
 LA R2,0
 DR R2,R1 * MINUTS
 CVD R3,DOUBLE
 UNPK MM,DOUBLE+6(2)
 OI MM+1,X'F0'
 CVD R2,DOUBLE * REMAINING SECOUNDS
 UNPK SS,DOUBLE+6(2)
 OI SS+1,X'F0'
*
 LA R1,0
 ICM R1,B'0011',SMF64ESL
 LA R15,0(R1,R10)
 DROP R10
 USING SMFRCD64,R15
 MVC R_DDN,SMF64DDN * DDNAME
 L R3,SMF64DIN * INSERTIONS
 CVD R3,DOUBLE
 MVC INSERT,MODEL
 ED INSERT,DOUBLE+2
 L R3,SMF64DDE * RECORDS DELETED
 CVD R3,DOUBLE
 MVC DELETE,MODEL
 ED DELETE,DOUBLE+2
 L R3,SMF64DUP * RECORDS UPDATED
 CVD R3,DOUBLE
 MVC UPDATE,MODEL
 ED UPDATE,DOUBLE+2
 L R3,SMF64DRE * RECORDS RETRIEVED
 CVD R3,DOUBLE
 MVC READS,MODEL
 ED READS,DOUBLE+2
 L R3,SMF64DCS * CONTROL INTERVAL SPLITS
 CVD R3,DOUBLE
 MVC CI_SPLIT,MODEL2
 ED CI_SPLIT,DOUBLE+4
 L R3,SMF64DAS * CONTROL AREA SPLITS
 CVD R3,DOUBLE
 MVC CA_SPLIT,MODEL2
 ED CA_SPLIT,DOUBLE+4
 L R3,SMF64BMH * HIT LOCAL SHARED BUFFER POOL
 CVD R3,DOUBLE
 MVC HITLBP,MODEL
 Appendix A. Sample code 389

 ED HITLBP,DOUBLE+2
 L R3,SMF64CFH * HIT CF CACHE STRUCTURE
 CVD R3,DOUBLE
 MVC HITCF,MODEL
 ED HITCF,DOUBLE+2
 L R3,SMF64RIO * DATA RECORDS FROM DASD
 CVD R3,DOUBLE
 MVC DASD,MODEL
 ED DASD,DOUBLE+2
*
PUTREC LTR R8,R8 TITLE?
 BNZ GR_REC
 LA R8,1
 PUT REC,TIT
 PUT REC,REC_SPC
 PUT REC,HEADER
 PUT REC,REC_SPC
 LA R15,0
 ST R15,RC
GR_REC PUT REC,REC_JOB
 PUT REC,REC_RLS
 PUT REC,REC_IO
 PUT REC,REC_SPC
 BCT R9,READ
 B SET_TIT
 DROP R15
*
GOBACK CLOSE (SMFDUMP,,REC)
 L R13,SAVE+4
 L R14,12(R13)
 L R15,RC
 LM R0,R12,20(R13)
 BR R14
*
ABEND LR R7,R15
 WTO 'OPEN ERROR',ROUTCDE=11
 ABEND 1000,DUMP,STEP
*

* EXECUTE INSTRUCTIONS

PACK PACK DOUBLE,5(0,R5)

* DCBS

SMFDUMP DCB DSORG=PS,EODAD=GOBACK,MACRF=(GL),DDNAME=SMF
REC DCB DSORG=PS,MACRF=(PM),DDNAME=REPORT,LRECL=133

* WORK AREA
390 VSAM Demystified

SAVE DC 18F'0' LINKAGE CONVENTION AREA
SPANNED DC F'0'
DOUBLE DS D
HDUMP DC H'18' SKIP DUMP AND TRAILER SMF RECORD
F3600 DC F'3600'
F100 DC F'100'
F60 DC F'60'
RC DC F'4'
TIT DC 134C' '
 ORG TIT
 DC C'1'
 ORG TIT+10
 DC C'VSAM RLS - CF STRUCTURE STATISTICS '
 DC C'SINCE LAST OPEN'
 ORG ,
HEADER DC 134C' '
 ORG HEADER+1
 DC C'SYSID'
 DS CL1
 DC C'JOBNAME'
 DS CL2
 DC C'START DT/TIME'
 DS CL2
 DC C'DDNAME'
 DS CL3
 DC C'DATA SET NAME'
 ORG ,
 DS 0F
REC_JOB DS 0CL134
 DC 134C' '
 ORG REC_JOB+1
R_SYSID DS CL4 1
 DS CL2 5
R_JOB DS CL8 7
 DS CL1 15
DATE DS CL5 16
 DS CL1 21
HH DS CL2 22
 DC C':' 24
MM DS CL2 25
 DC C':' 27
SS DS CL2 28
 DS CL1 30
R_DDN DS CL8 31
 DS CL1 39
R_DSN DS CL44 36
 ORG ,
REC_RLS DC 134C' '
 Appendix A. Sample code 391

 ORG REC_RLS+1
 DC C'LOCAL BP HIT:' 1
HITLBP DS CL12 14
 DS CL1 26
 DC C'CF CACHE HIT:' 27
HITCF DS CL12 40
 DS CL1 52
 DC C'I/O DASD:' 53
DASD DS CL12 62
 ORG ,
REC_IO DS 0CL134
 DC 134C' '
 ORG REC_IO+1
 DC C'INS:' 23
INSERT DS CL12 27
 DS CL1 39
 DC C'DEL:' 40
DELETE DS CL12 44
 DS CL1 56
 DC C'UPDT:' 57
UPDATE DS CL12 62
 DS CL1 74
 DC C'READ:' 75
READS DS CL12 80
 DS CL1 92
 DC C'CI-SPLT:' 93
CI_SPLIT DS CL6 101
 DS CL1 107
 DC C'CA-SPLT:' 108
CA_SPLIT DS CL6 116
 ORG ,
REC_SPC DC 134C' '
MODEL DC X'402020202020202020202120'
MODEL2 DC X'402020202120'

* DUMMIES E EQUATES

 LTORG
 YREGS
 DSECT
 IDASMF64
 END SMFRLS
//*--*
//L.SYSLMOD DD DISP=SHR,DSN=LOAD_LIBRARY
//L.SYSLIB DD DISP=SHR,DSN=LOAD_LIBRARY
//L.SYSIN DD *
 ENTRY SMFRLS
 NAME SMFRLS(R)
/*
392 VSAM Demystified

GTF procedure example
Example: A-6 GTF Procedure example

//*--*
//* TRACE START: UNDER SDSF ==> /S GTFIO
//* REPLY:
//* NN AHL125A RESPECIFY TRACE OPTIONS OR REPLY U
//* TO USE OPTIONS ==> NN,U
//* TO CHANGE OPTIONS ==> NN,TRACE=SSCHP,IOP,PCI,CCWP,JOBNAMEP
//* ANSWER THE REPLY:
//* NN AHL101A SPECIFY TRACE EVENT KEYWORDS SSCHP IOP CCWP,JOBNAMEP
//* WITH ==>
//* NN,SSCH=(ADRS),CCW=(SI,CCWN=512,DATA=16,PCITAB=5),JOBNAME=JJJJ
//* ADRS; DEVICES ADDRESS TILL 128: ADDI-ADDF
//* NEW REPLY: RR AHL102A CONTINUE TRACE DEFINITION OR REPLY END
//* ANSWER ==> RR,END
//* AGAIN REPLY MSG AHL125A, ---------> N,U
//* TO STOP THE TRACE, COMMAND ---------> /S NNNNN
//* NNNNN IS THE STEPNAME SHOWN IN "DA" SDSF OPTION
//*==
//* MEMBER MHL CONTAINS THE GTF TRACE OPTIONS:
//* TRACE=SSCHP,IOP,PCI,CCWP,JOBNAMEP
//*==
//GTFIO PROC MEMBER=GTFVSAM,M=MHL
//IEFPROC EXEC PGM=AHLGTF,PARM='MODE=EXT,DEBUG=NO,TIME=YES',
// TIME=1440,REGION=6M
//IEFRDER DD DSNAME=SYS1.&M..TRACE,UNIT=SYSDA,SPACE=(CYL,(150)),
// DISP=(NEW,CATLG)
//SYSLIB DD DSNAME=MHLRES2.TESTS.JCL(&MEMBER),DISP=SHR
 Appendix A. Sample code 393

394 VSAM Demystified

Appendix B. Miscellaneous performance
items

In this appendix, we describe the lab environment used for our measurements
throughout the book, and have a general discussion on caching, and common
error messages indicating broken data sets and output from the EXAMINE
command.

B

© Copyright IBM Corp. 2001, 2003. All rights reserved. 395

Our test environment
We ran a few experiments to clarify some performance and usability aspects of
VSAM. However, it happened in a non-controlled environment, where we cannot
guarantee the same level of multiprogramming, and the same load in our DASD
controller. Nevertheless, the results are sound, if you take into consideration such
variables as number of EXCPs, I/O Connect time, and CPU time to compare the
runs.

The jobs are totally I/O bound due to read-and-forget and write-from-thin-air.

Hardware configuration
The CEC is a 2064 z900-1C7. Our three LPs (SC63, SC64, SC65) have 1.5 GB
each of central storage and are located in the same CEC.

The two CF images have 1.0 GB each of central storage, also located in the
above referenced in CECCF. The links to the CFs and between the CFs (for SM
duplexing) are all IC peer-to-peer links. There are 2 shared links between each
z/OS and each CF, and f links between the CFs (for duplexing).

You have 8 FICON paths to an ESS model 800 controller (not turbo) with a small
I/O load.

Software configuration
All tests were done under z/OS V1 R4.

General lab description
The data for our tests were generated using IEBDG utility. The JCL and
commands used are shown in Example B-1. We generated 2M records to create
a master KSDS cluster, with random binary key. The data was the same for all
tests, except for those tests compared with the data of first edition of this book.

The type of data and the number of records are not the same as that used in the
first edition of this redbook. We increased the number of records and types of
data due to changes in CPU velocity, data rate (like FICON) and enhancements
in ESS (SHARK).
396 VSAM Demystified

Example: B-1 JCL for data test

//CREATE EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=*
//TESTOUT DD DSN=MHLRES2.DATA.VSAM,DISP=(,CATLG),UNIT=SYSDA,
// LRECL=300,RECFM=FB,SPACE=(CYL,(500,500),RLSE),
// VOL=SER=(DJL001,DJL002)
//SYSIN DD *
 DSD OUTPUT=(TESTOUT)
 FD NAME=KEY1,LENGTH=4,FORMAT=RA
 FD NAME=KEY2,LENGTH=4,FORMAT=RA
 FD NAME=DATA1,LENGTH=30,FORMAT=AL,ACTION=RP
 FD NAME=DATA2,LENGTH=30,PICTURE=15,P'941246876976215',ACTION=RP
 FD NAME=DATA3,LENGTH=100,FORMAT=AN
 FD NAME=DATA4,LENGTH=100,FORMAT=CO
 FD NAME=DATA5,LENGTH=32,FORMAT=RA
 CREATE QUANTITY=2000000,NAME=(KEY1,KEY2,DATA1,DATA2,DATA3,DATA4,DATA5)

The sequencial access tests were done using an assembler program that opens
the VSAM data set and reads it all. No others processing are done with the
records.

The direct access tests were done using an assembler program. The kind of
tests with direct access was two:

� Read direct: Read a sequencial file with 200,000 keys to read in direct access
in the VSAM data set. The keys in the sequencial file are not in key sequence.

� Inserts: Read a sequencial file with 200,000 keys to read in direct access in
the VSAM data set. If the keys does not exits, inserts the new key in the
VSAM data set. The keys in the sequencial file are not in key sequence and
100,000 are insertions to the VSAM data set.

The load of the data set was done using IDCAMS.

The jobs access a KSDS master cluster with the following characteristics:

� LRECL = 300 bytes
� Key length = 8 bytes
� Number of records = 2,000,000 (not uniform key values distribution)
� Free Space = (10,20)
� Data component CI size 4096
� Index component CI size chosen by VSAM

There is also a physical sequential file where the 300-bytes records represents
inclusions or reads in the master, with no repeated keys.

� DIRECT GET: 199,998 records, 10%
 Appendix B. Miscellaneous performance items 397

� GET SEQUENTIAL: Reads sequentially all records of the VSAM data set
(2,000,000 records), with minimum record processing.

� INSERTIONS: 99,999 records (5%). Splits after insertions:

– Data component:

• Control interval: 20,810
• Control Area: 0

– Index component:

• Control interval: 0
• Control area: 0

What do we measure?
To compare the performance results among the runs, we select the following
variables:

� Total I/O connect time

Connect time is when the channel is transferring data from or to the cache. As
we keep in all the experiences, always the same volume located in the same
controller and accessed by the same channel type (so, always the same data
rate), the connect time is an indirect measurement about how many bytes
were transferred along the I/O operations. Then, the only way of decreasing
the total I/O connect time is by moving less data to or from storage.

Variations in the load of the controller should not affect this value.

The total connect time was captured with GTF.

� Total I/O Disconnect time

Disconnect time occurs when the channel is not doing activities related to the
execution of the channel program along the I/O operation. It means that the
target record for a read is not in the cache and the disk access is a must.
Then, the only ways of decreasing the total I/O disconnect time is by moving
less data to or from storage or improving the use of the cache

Variations in the load of the controller should affect this value.

The total disconnect time was captured with GTF.

� Number of EXCPs

In SMF account information for SAM data sets, one EXCP equates one
physical block transfer.

For VSAM data sets one EXCP equates to one real I/O operation for data or
index. It is not true, that the number of EXCPs for VSAM measures the
number of transferred CIs. One EXCP in may mean more than one CI being
transferred. The number of CIs per I/O depends very much in the number of
398 VSAM Demystified

buffers and in the buffering technique. Consequently, the number of EXCPs is
not repetitive, that is, the same job reading the same data set may present a
different number of EXCPs. The reasons justifying the number of I/O
operations instead of CIs are:

– We can measure the VSAM capacity in saving I/O operations and
consequently saving TCB and SRB time.

– The number of I/O transferred CIs can be cached from LISTC in the
catalog or from SMF record 64

In our measurements, the number of EXCPs corresponds to the number of
I/O operations.Variations in the load of the controller should not affect this
value.

� Elapsed time

Elapsed time is the wall clock time to run the job used in the test. If the I/O is
faster, in I/O bound job the elapsed time should be less.

Variations in the load of the controller and the system should affect this value.

� Total CPU time (TCB and SRB)

All the runs are totally I/O bound, meaning no processing at all. Then the TCB
time can be charged to the preparation of the I/O operation, including VSAM
buffer pool management. SRB time here is spent along I/O interrupts
processing only.

Variations in the load of the controller and system should affect very mildly
this value.

RLS experiments
Refer to “Batch RLS performance experiments and comparison” on page 300.

DASD cache concepts
A cache is a fast storage (no mechanical movement) located in the DASD
controller with two functions: to minimize access to disks (by having hits) and to
serve as a speed matching buffer to synchronize elements with different speeds
as channels and disks in a cache miss. In this appendix the word disk does not
have the same meaning of DASD. Disk implies RAID media (FBA, SSA or SCSI)
used by modern controllers. DASD still means the logical 3390/3380.

To have random hits (saving disk access) for reads and writes, the I/O workload
must revisit its data, however in certain cases it does not happen. In this case
such workloads are called cache unfriendly. Usually, we may have two types of
hits for VSAM data, when the application revisits:
 Appendix B. Miscellaneous performance items 399

� Exactly the same logical record in a CI already in cache

� The same data CI (already in cache) because other logical record (a sort of
lucky)

For sequential access, it is important to say that, cache does not save data CI
disks I/O operations. The cache only tries to match the speed of the disks and
channels.

With the new controllers a cache miss implies accessing the RAID disks and not
the logical 3390/3380 device (which do not exist physically). Because the
mapping between the 3390/3380 tracks to the FBA RAID disks is not
externalized, it is not important anymore the relative location of files in order to
avoid long Seeks or even RPS misses.

It is interesting to note that heavy cache access reduces DASD skew (unequal
3390/3380 device utilization) because data formerly in heavily used devices now
became electronically accessible due to the LRU algorithm. Refer th the DASD
Activity report in Figure B-1.

Figure B-1 DASD Activity Report

Increasing the I/O rate, decreases the disconnect time (less the disconnect more
hits in cache) due to the LRU algorithm is keeping in cache the most used
elements.

There are two types of cache: volatile and non-volatile (NVS). NVS is used to
keep DFW, dual copy and XRC remote copy records. In this chapter we use the
word cache meaning the volatile cache and NVS for the non-volatile.

The cache is made of CMOS DRAM storage for Data and Directory. The
directory entries describes the data elements (4 KB in ESS) and are ordered in
the following queues:

� LRU (pointing to active data elements)
� Free (available for staging from disk or writes)
� Pinned (changed data in cache and the respective disk is not available)
� Defective

 I=92% DEV ACTV RESP IOSQ ---DELAY--- PEND DISC CONN
VOLSER NUM MX LCU RATE TIME TIME DPB CUB DB TIME TIME TIME
TOTTSJ 256C 005A 0.024 11 0 0.0 0.0 0.0 0.2 8.2 2.2
TOTJS1 250C 0059 5.764 6 0 0.0 0.0 1.2 1.5 0.1 4.7
TSMS50 650D 4 0144 139.6 1 0 0.0 0.0 0.0 0.3 0.0 0.7
400 VSAM Demystified

Destage is the movement from cache to disk caused by previous DFW and CFW
writes (to be covered later) and it is asynchronous with the I/O operation which
executed the writes. By the way, demotion is not a synonym of destaging.
Demotion means to take a data element out from cache. If there is a valid copy in
disk there is not a destage. If not, a destage is done. There are three types of
destaging:

� To relieve contention, when NVS or Cache become full. Controlled by
modified LRU algorithms, when the percentage of NVS occupancy is greater
than X%. If greater than Y% (Y>X), then the DFW I/O operation bypass the
NVS cache going synchronously from volatile cache to disk (called DFW
bypass)

� Done in background by the controller when the percentage of NVS occupancy
is above another threshold Z% (Z < X)

� Forced by Z EOD command or by an hardware error

The amount of data destaged is usually more than one 3390/3380 track. A smart
controller can Identify other records changed in adjacent tracks of the record to
be destaged and destage all of them. It saves rotational delays in the disks and
bypass the RAID write penalty.

Stage is the movement from DASD to cache, it can be synchronous (a read miss)
for a random request or asynchronous for a sequential look ahead read. Pay
attention that random and direct have the same meaning.

A cache hit may overlap with staging/destaging operations, for the same
3390/3380 logical device. It is possible to have concurrent access to same
3390/3380 device data but not in the same track, for example, one hit in the
cache and an asynchronous destage in the disks back storage (not in the same
3390/3380 track). This is not the ESS PAV feature, because here there is just one
active I/O operation, that is the one with the hits in the cache, the destage is just
controller housekeeping.

Controller accounts data about number of I/O operations, hits, misses, destages,
in a volume or in a data set basis. These values are shown by IDCAMS
LIISTDATA command, by RMF Cache report and used in SMS for Dynamic
Caching for data sets.

Set Subsystem CCW activates the use of caching in the controller (subsystem)
and in individual volumes. This CCW allows cache modes as normal, DFW and
CFW. All these modes may be asked explicitly by software through the Define
Extent CCW (per each I/O operation), in some cases the controller can
adaptively change the mode due to the observed pattern of access. Following is
the description of such CCW.
 Appendix B. Miscellaneous performance items 401

Define Extent CCW provides a 16 bytes parameters, which define limits on
subsequent operations (extent information, avoidance of writes, for example),
provide a blocksize value, and specify caching control mode (or hints) for the
channel program. The caching mode have the granularity of I/O operation. These
modes are not totally mutual exclusive, and the same I/O operation may have
more than one mode. The modes are:

� Track Level Cache (TLC)
� Record Level Cache (RLC)
� Sequential:

– Reads:

• Sequential Access
• Sequential Pre-stage

– Writes

� Least Recently Used (LRU)
� Normal Caching
� CFW
� DFW

– With the possibility of Quick Writes

� Bypass Cache
� Inhibit Cache Loading

Cache Modes
An explanation of these modes is:

� Track Level Cache (TLC)

In TLC the unit of transport between cache and disks are the 3390/3380
tracks. TLC is more adequate to sequential. When in TLC mode the
3390/3380 track is staged in cache in one pass (if first miss is in record zero
(R0)) or in two pass (if first miss is not in R0). RVA only has track level cache
because the compact/compress data cause little traffic when moving logical
3390/3380 tracks.

� Record Level Cache (RLC)

In RLC the unit is the referred logical 3390/3380 physical record. RLC is very
adequate to random (also called direct) processing.

Let us explain what do we mean by “logical 3390/3380 physical record”. The
word logical indicates that the 3390/3380 does not real exist. The word
physical indicates that we are talking about the physical record (the block) in
the logical 3390/3380 track...
402 VSAM Demystified

RLC improves performance for applications that do not exhibit good locality of
reference and where the cost of track caching out weights the benefits. RLC
reduces the costs associated with cache miss I/Os by staging less data into
cache (less cache pollution), which frees the volume and other activity more
quickly. Reading less data into cache also enables data to stay in cache
longer, which increases the chances of future cache hits.

ESS controller is able to switch from one to the other depending on the
access pattern, independently of the Define Extent CCW.

RLC is mutually exclusive from TLC

RLC can be activated for VSAM SMS managed maybe-cache data sets. SMS
via DCME decides in Define Extent when to use RLC for reads. Refer to ,
“Using cache in an SMS data set” on page 409. In addition to deciding to
enable or to disable the cache for maybe-cache SMS data sets, SMS picks up
between RLC or TLC for reads.

� Sequential

When in sequential mode, the controller uses the cache just as a speed
matching buffer, to synchronize different speeds. There are two types.

In sequential read mode, the controller does the pre-staging of a certain
number of future referenced logical 3390/3380 tracks. After used, the tracks
are or not demoted from cache depending on the sub mode:

– Sequential Access: The used data is a strong candidate to be demoted

– Sequential Pre-stage: The used data is protected by the LRU algorithm.

Sequential read can be activated:

– Explicitly by software through Define Extent CCW (also called sequential
hint), as declared by VSAM ESDS for Sequential Access. KSDS/VRRDS
in certain conditions declare Sequential Pre-stage.

– By sequential detect, where the controller detects sequential access (six
sequential referred logical 3390/3380 physical tracks in the ESS).

Because KSDS/VRRDS VSAM organizations (in certain conditions) do not
use the Define Extent. Then, in this case, it is interesting to avoid CI /CA
splits in data sets usually processed sequentially. Splits make the logical
sequence different from the physical sequence, and the controllers only
detect the physical sequence pattern.

� Least Recently Used (LRU)

LRU is not properly a mode, but a technique to maintain in the cache the most
referenced elements. It is the major algorithm to control cache demoting,
admitting that, if an element was referenced in the past, it is going to be again
in the future. LRU is automatically set off when sequential caching, inhibit
cache load and bypass cache modes are active
 Appendix B. Miscellaneous performance items 403

� Normal Caching

In this mode the NVS cache is not used. There are four cases to consider in
this mode:

– For a read hit, there is a data transfer from cache to channel followed by a
channel end (CE)/ device end (DE) I/O interrupt. The directory entry is
LRU update (meaning that the data is to be kept in cache for a while).

– For a read miss, the channel is disconnected, the disk is accessed to
stage data to cache (here, we may have the delay caused by the disk
being already busy or all lower interfaces are busy). After that, the channel
is reconnected and the data is transferred to channel from cache, CE/DE
I/O interrupt, stage rest of track (if in track mode), LRU update.

If all the serving channels are busy, there is not an RPS miss, because the
data is already in the cache. With the new controllers, RPS misses only
occur when the internal path to disks are busy and the disk needs a new
revolution.

– For a write hit, because the NVS cache is not used, it is like a miss. The
channel moved data to volatile cache and disconnects. The disk is
accessed synchronously to write data (here, we may have the delay
caused by the disk being already busy or all lower interfaces are busy).

The word synchronously means that the write to disk is done without the
end of the I/O operation be posted to the application.

After the write to disk, the channel is reconnected and CE/DE I/O interrupt
is presented. LRU update (meaning that the data is to be kept in cache for
a while)

– For a write miss the channel move data to cache and disconnects. The
disk is accessed synchronously to write data (here, we may have the delay
caused by the disk being already busy or all lower interfaces are busy).

The word synchronously means that the write to disk is done without the
end of the I/O operation be posted to the application.

After the write to disk, the channel is reconnected and CE/DE I/O interrupt
is presented. No LRU update, meaning that the cache copy if the data is
ready to be demoted

� Cache Fast Write (CFW)

Is used for temporary data sets and consequently does not use the NVS for
writes. It must be allowed by the Set Subsystem CCW issued by IDCAMS.

– For reads and write misses is identical to normal caching.

– For a write hit, the data is transfer from the channel to the cache followed
by a CE/DE I/O interrupt and the directory entry is LRU update (meaning
404 VSAM Demystified

that the data is to be kept in cache for a while). Later on asynchronously
the data will be destaged to disks.

Used by Sort for temporary files and for creating PDSE members (before the
Stow) when the Hiperspace is full. The exploiter must declare CFW in the
Define Extent CCW.

� DASD Fast Write (DFW)

DFW allows the use of the NVS cache for writes. It avoids accessing disks for
a write hit. It must be allowed by the Set Subsystem CCW issued by IDCAMS.

– For reads is identical to Normal Caching.

– For a write hit, the data is transfer from the channel to the cache and NVS,
followed by a CE/DE I/O interrupt and the directory entry is LRU update
(meaning that the data is to be kept in cache for a while). Some modern
controllers as ESS sends the CE/DE earlier with one copy of the data in
the NVS (other copy in the channel adapter buffer) doing the copy to the
volatile cache immediately after the CE/DE.

Later on and asynchronously the data will be destaged to disks. However,
if the NVS cache is under stress the controller is smart enough in sending
the data from volatile cache directly to disks (synchronously). This
situation is called DFW bypass and the channel stays disconnected along
this data transfer. If you recall the dam story is like creating a bypass in the
dam.

� Almost 100% DFW Hits (Quick writes)

This mode allows the use of the NVS cache for writes. It avoids accessing
disks for a write hit and almost 100% of the write misses. In certain
controllers, its logic is included in the RLC licensed internal code (LIC).

Almost 100% DFW hits is also called "quick writes". It allows a DFW miss turn
to a hit (provided that adequate NVS space is available).

The reason causing the access of disks for a write data miss in a DFW mode
is the verification of the record length. To clarify this point refer to Figure B-2
and follow the description of the existent two types of write CCWs.

– Write format, also called write count-key-data, formats the 3390/3380
track by overlaying the old records in the track and creating a count with
the respective data (usually with a zero content), the rest of the track is
erased. The length of the data record is included in the write
count-key-data CCW and copied in the count. In this case, the previous
record data length is not important because it is overlaid.

All the write format I/O operations are considered a write hit.

– Write modified, also called write data, change the contents of the data
portion of a pre-formatted record which length is already described in the
 Appendix B. Miscellaneous performance items 405

count. The length of the data record is also included in the write data
CCW. Any mismatch between this length and the one already specified in
the count of the formatted record is posted by the channel (to the
application) and in some cases, it may stop the execution of the channel
program. Then is clear the need of accessing the 3390/3380 track in a
DFW write modified miss because the controller is not able to verify (and
compare) the length in the write modified CCW and the count. On the
other hand is now clear why the write format is always a hit, because there
is no need of such verification.

Figure B-2 Types of writes

For quick writes the controller must know or be able to predict the length of
the record avoiding the access to the disks.

Quick writes is implemented in two sub-modes associated with record level
cache. Remember that in some IBM controllers, quick writes are associated
with the record level cache LIC:

– Record Level Cache I:

It is a joint VSAM/controller implementation.

Write Format (CKD)

HA C D C D

R0 R1

HA C D C D C D

R0 R1 R2

(D)Channel

Always
Hit!

I need to
match the
length in disk

Write
Format

C D

Write
Modified

Controller

Controller

(C & D)Channel

Cache

D

NVS

Cache

D
NVS

D

Write Modified (D)
406 VSAM Demystified

Because VSAM is a trusted partner (regular data format) all writes
become quick writes, that is, the controller decides not to go to disk to
verify the data record length. This function benefits IMS, DB2 and CICS
users of VSAM. The data set could be SMS or not, it requires
DFSMS/MVS 1.2 or PTF equivalent.

– Record Level Cache II:

 It is non-adaptive (the controller does by itself), with no Define Extent
CCW software intervention. When RLC II is activated it cannot be
disabled. In the first access to the record there is a disk access (miss) and
the record length is moved and kept in cache for the future requests. It
aims to reach "almost 100% writes hits". The controller automatically
determines whether to use the track cache algorithm as it processes I/Os
to the volumes with cache active. RLC II requires:

• Volume behind a controller with RLC II installed
• TLC enabled for that volume
• DFW enabled for that volume

� Inhibit Cache Load (ICL)

If a read hit occurs read from cache and LRU update. If a read miss or a write
access the disks through volatile cache, no LRU update. Then, cache space
is not allocated for any new tracks from DASD. Write operations that do not
require access to DASD are not inhibited by this setting.

Used by DFDSS, DFSORT™ (Sortin), SMS (never-cache and some of the
maybe-cache data sets). As a general rule, it maybe used by an application
which knows that the record to be requested is not going to be used in the
near future (as for cache unfriendly accesses).

Ignore ICL is an option set in VPD, when your workload is not aware of a huge
cache size

� Bypass Cache

Where the I/O request must be executed in the disks (even if the data is in the
cache). However, the data always pass through cache without LRU update,
consequently the copy is ready to be demoted. If a hit in the cache, the LRU is
updated. Cache images of tracks modified on the device will be invalidated.
Tracks modified in cache but not on DASD are destaged to DASD before
access is allowed. For Duplex volumes this includes destaging to both
devices. DASD Fast Write operation is disabled with this attribute active.

It is used by ICKDSF, paging, and Write Check access method option.

Ignore BYP is an option set in VPD, being used when your workload is not
aware of a huge cache size.
 Appendix B. Miscellaneous performance items 407

Using cache modes in a non-SMS data set
An I/O operation towards a non-SMS data set is able to use some of the cache
modes. In order to do that, you must use IDCAMS Setcache command to
activate:

� Globally in the controller:

– Cache in general
– DFW (or the use of NVS)
– CFW

RMF in cache subsystem status reporting Figure B-3 shows the result of such
operation:

Figure B-3 Cache Subsystem Status report

� Locally in each volume:

– Normal cache
– DFW (or the use of NVS)
– Dual Copy

RMF in Cache Activity report in Figure B-4 shows the result of such operation:

Figure B-4 Cache activity report

--
CACHE SUBSYSTEM STATUS

--

SUBSYSTEM STORAGE NON-VOLATILE STORAGE STATUS

CONFIGURED 256.0M CONFIGURED 8.0M CACHING
AVAILABLE 254.9M PINNED 0.0 NON-VOLATILE
STORAGE
PINNED 0.0 CACHE FAST WRITE
OFFLINE 0.0 IML DEVICE AVAILABLE

VOLSER D83STE NUM 0D84
--
 CACHE DEVICE STATUS
--

CACHE STATUS DUPLEX PAIR STATUS

CACHING - ACTIVE DUPLEX PAIR - NOT ESTABLISHED
DASD FAST WRITE - ACTIVE STATUS - N/A
PINNED DATA - NONE DUAL COPY VOLUME
408 VSAM Demystified

These options are passed to the controller by IDCAMS. Without SMS all the data
sets in volume follow these rules (normal or DFW). The other cache modes must
be declared explicitly by the requester through an IOS, which builds the define
extent CCW.

Using cache in an SMS data set
SMS uses the define extent CCW to set some cache modes along the I/O
operation for an SMS data set. If there is a conflict between Define Extent and
IDCAMS volume setting the more restrictive option prevails.

For example: IDCAMS says non-DFW for the volume and define extent says
DFW for the I/O operation, then it will be non-DFW.

However, there are certain cache modes not set by SMS as bypass cache and
CFW. In this case the requester should use interface directly with IOS in order to
have theses options in the define extent CCW.

Cache usage attributes
An opened SMS data set may have one of three cache usage attributes, in
regard to DASD cache:

� Must-cache data set: Uses cache/NVS for the I/O operations.

� Never-cache data set: Does not use cache (only for buffering) and does not
use NVS. The ICL mode is requested in Define Extent CCW.

� May-cache data set: Uses cache/NVS depending on the cache/NVS
constraints.

The same data set may have one of the above attributes for sequential accessing
mode and a different one for direct accessing mode. This is also true for read
access and write access. These attributes are based in the SMS storage class
(SC) installation parameters (MSR for Direct, MSR for sequential or BIAS
respectively). MSR is the desired I/O service time in milliseconds and BIAS the
expected dominance of reads or writes operations.

The cache usage attributes are assumed at open time, for a data set. These
cache attributes are kept constant until the data set is closed.

Dynamic Cache Management Enhanced (DCME)
DCME is a function in the controller able to produce cache information in a
system and in a data set basis. SMS uses data from DCME in order to adjust the
use of the cache for may-cache data sets. With DCME, SMS distinguishes
between good (cache-friendly) and poor cache (cache unfriendly) candidate data
sets when deciding which I/Os to which data sets should be cached.
 Appendix B. Miscellaneous performance items 409

DCME produces two key measurements:

� Data set cache behavior:

DCME maintains information about the hit ratios achieved by I/Os to each
may-cache data set. DCME continuously updates this information so that it
can make decisions on which I/Os to which data sets should be cached,
based on the most recent I/O activity.

When considering whether or not to cache I/Os to a data set, two controller
resources must be accounted for: the cache and the NVS. A data set might
very well be a good user of the cache and a poor user of the NVS. SMS,
therefore, maintains two criteria: one general (for all I/Os) and one specific for
writes.

Two data set related indicators are calculated:

– Overall Hit Ratio: Reads Hits + Writes Hits / Cachable IOs

Used to decide to cache a Read request.

– Write Hit Ratio: Write Hits / Write IOs

Used to decide to cache a Write request.

A hit is perceived by a disconnect time less that 0.5 ms.

These indicators are weighed averages of previous values to avoid sudden
changes.

� Subsystem load (here the word subsystem means DASD controller)

The DCME in controller produces global data about the cache usage.

A Subsystem Threshold (ST) indicator is timely calculated by SMS from the
global DCME data. Higher the ST more cache contention. These statistics are
periodically collected by SMS. The time is controlled by DINTERVAL at
IGDSMSxx Parmlib (default 150 seconds).

ST reflects the DASD cache performance and is composed by the figures of
Read Hit Ratios and DFW bypass for all the cached volumes in the DASD
subsystem.

The DFW bypass occurs when a DFW hit request requires NVS, but this storage
is not available due to contention. In this case, the I/O request will bypass the
NVS and is executed directly from the volatile cache to the disks.

 Also, based on the statistics, SMS maintains two global average indicators:

� Cache Control Indicator (CCI), the percent of may-cache I/O requests allowed
to use cache.
410 VSAM Demystified

� NVS Control Indicator (NVSCI), the percent of may-cache DFW I/O requests
allowed to use NVS.

These values used for this caculation can be displayed using the D SMS,CACHE
command (Figure B-5).

Figure B-5 D SMS,CACHE output

The following legend explains the columns in Figure B-5:

� Ssid = Subsystem Identifier

� Devs = Number of managed devices attached to subsystem

� Read = Percent of data on managed devices eligible for caching

� Write = Percent of data on managed devices eligible for DFW

� Hit Ratio = Percent of reads with cache hits

� Fw Bypasses = Number of fast write bypasses due to NVS overload

An I/O operation for a may-cache data set has three states:

� Normal, the data set I/O is allowed to use the cache through the define extent
CCW.

� Inhibit, the data set I/O does not use the cache that is, the Inhibit Cache Load
bit is set on the define extent first CCW of a Read channel program, in order
to inhibit the staging of the cache. In the case of a Write channel program, the
Inhibit DFW bit is set on the define extent first CCW of a Write channel
program, to inhibit DFW, and consequently the staging of NVS.

� Force, the data set I/O is cached so that the indicators can be evaluated.

IGD002I 18:09:11 DISPLAY SMS 276
 SSID DEVS READ WRITE HIT RATIO FW BYPASSES
 00FF 5 N/A N/A 97% 0
 8900 8 N/A N/A 98% 0
 8902 5 N/A N/A 98% 0
 8904 4 N/A N/A 99% 0
 8903 7 N/A N/A 99% 0
 8901 4 N/A N/A 98% 0
 000A 8 N/A N/A 99% 0
 3000 21 N/A N/A 99% 0
 8905 6 N/A N/A 97% 0
 6004 8 N/A N/A 90% 0
 0028 4 N/A N/A 98% 24
 00FD 7 N/A N/A 98% 0
 00FC 4 N/A N/A 99% 0
 00FE 1 N/A N/A 98% 0
 Appendix B. Miscellaneous performance items 411

The logic is:

� After open for the first 100 I/Os and the first 100 Writes the I/Os are forced.

� The data set indicator is compared with subsystem threshold. If does not
exceed, the data set I/Os are going to be inhibited for the next 5000 I/Os. If
exceeds, the data set I/Os are going to be normal for a certain amount of
time, where the comparison is going to be done again.

So, if the ST indicator is going up, the exclusion from cache for may-cache data
sets is gradual. No sudden and dramatic changes in the DASD subsystem
performance are caused.

As a DCME by-product DFSM I/O statistics (I/O rates, I/O response time, I/O
service time components, caching statistics for reads and writes) are collected in
new SMF records in data set and storage class basis.

Never-cache candidates data sets
There are some data sets that are not good candidates for DASD caching, such
as:

� Data sets that are processed track-by-track, as the input to the dump function
of DFDSS itself. However, in this case the installation does not need to care
about this, because DFDSS uses the adequate option (inhibit cache load) in
the Define Extent command.

� Data sets which have a very poor direct revisit pattern.

� ASM paging data sets.

Share options analogy
Refer to Figure B-6, to follow this explanation:

Once upon a time, there were two lands (MVS A and MVS B) separated by a
river. All the culture accumulated by the people living there was stored in two
shared VSAM data sets strategically located in the middle of the separating river.
In each land, there were two sets of people, the round-head and the square-head
(pay attention that each set lives on both sides of the river). Each head shaped
people used their own data set (black data set for the square and white data set
for the round head). The data sets were accessed by students, the readers (for
read) and by the professors, the updaters (for writes).
412 VSAM Demystified

Figure B-6 Sharing VSAM data sets

The square-heads (from the both lands) care about write integrity and not about
read integrity, so they choose shareoptions (2 3) for their data set and they use
GRS adequately for their purpose.

The round-heads (from the both lands) cared about write and read integrity. They
decided to implement that through GRS/ENQ mechanism only. The shareoptions
of the round-head data set is (3 3).

The picture is showing what finally happened:

� In the square-head story, we may see, updaters being held by the VSAM gate
in both sides of the river. This was caused by cross region 2 in shareoptions.
Only one updater succeeds in passing the gate (in each side). All others open
for output fail with a return code in ACB. However, the reader in MVS A was
not blocked by VSAM gate (no read integrity).

Updater

Updater

Updater Updater

VSAM

Global
GRS Updater

Updater

Local
ENQ

Updater

Updater

Reader

Updater

MVS A MVS B

(23)

(33)

VSAM

Local
ENQ
 Appendix B. Miscellaneous performance items 413

To guarantee write integrity between updaters from the two lands, a global
GRS/ENQ is implemented guaranteeing that a second updater (from MVS B
in the picture) which arrived last, be held at the GRS gate.

� For the round-head story, there are no VSAM gates for the round-heads
because of cross region option 3. In both sides they implement a local ENQ
gate to guarantee read and write integrity. That is, only one updater or several
readers from each MVS are allowed to the round-head data set.

However, they did not read the GRS Primer book. The ENQ name is not
made global to GRS, and then two updaters (each from each land) are
allowed to update concurrently the round-head data set, then blowing up the
integrity.

Symptoms (messages) from a broken data set
The most common messages associated with broken data sets events are:

� IDC3302I ACTION ERROR ON dsname

Explanation: An error was detected while attempting to access the data set.
See the associated message in the program listing for explanation.

� IDC3308I ** DUPLICATE RECORD xxx

Explanation: The output data set of a Repro command already contains a
record with the same key or record number. In the message text:

– xxx For an indexed data set, the first five bytes of the duplicate key, in
hexadecimal format. For a relative record data set, the relative record
number (in decimal) of the duplicate record.

– System Action: The system does not write the record. The system
continues processing with the next record, unless this is a copy catalog
and a duplicate record is encountered or there has been a total of four
errors. The system ends in either case. For example, if a duplicate record
is encountered while Repro is copying a catalog, the system ends
processing.

If the record in the input file with the duplicated key is to replace the one in the
data set, you should specify the replace option. If not, check your Repro input.

� IDC3314I RECORD xxx OUT OF SEQUENCE

Explanation: The key of the record to be written is less than or equal to the
key of the last record written. In the message text:

– xxx The first five bytes in hexadecimal format of the key of the record
that is out of sequence.
414 VSAM Demystified

– System Action: If the output data set is a virtual storage access method
(VSAM) data set, the system ends processing of the command after four
errors.

– Application Programmer Response: Rearrange the records to be written
so that they are in ascending key sequence. The record can be written to
the data set using skip sequential processing. Run the job again and the
output data set will be opened for skip sequential processing (because
data already exists in the data set) and records that were out of sequence
will be written.

� IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

 {RPLFDBWD=nnnnnnnn}

An error was encountered during VSAM open, close, or action request
processing, as indicated in the text of the message:

nnnnnnnn The meaning can be found in DFSMS/MVS Macro Instructions for
Data Sets.

rc The return code, as follows:

– For CLOSE errors, we present only the return codes associated with
broken data set situation:

128 Index search horizontal chain pointer loop
encountered.

136 Not enough virtual storage was available in the
program's address space for a work area for
CLOSE.

184 An uncorrectable I/O error occurred while VSAM
was completing outstanding I/O requests.

246 The compression management services (CMS)
close function failed.

– For OPEN errors, we present only the return codes associated with broken
data set situation:

76 Attention message: The interrupt recognition flag
(IRF) was detected for a data set opened for input
processing

This indicates that DELETE processing was
interrupted. The structure of the data set is
unpredictable; the access method services
DIAGNOSE command may be used to check the
data set for structural errors.
 Appendix B. Miscellaneous performance items 415

88 A previous extend error has occurred during EOV
processing of the data set.

96 Attention message: an unusable data set was
opened for input.

104 Attention message: the time stamp of the volume
on which a data set is stored doesn't match the
system time stamp in the volume record in the
catalog; this indicates that extent information in the
catalog record may not agree with the extents
indicated in the volume's VTOC.

108 Attention message: the time stamps of a data
component and an index component do not match;
this indicates that either the data or the index has
been updated separately from the other. Check for
possible duplicate VVRs.

116 Attention message: the data set was not properly
closed or was not opened. If the data set was not
properly closed, then data may be lost if processing
continues. Use the access method services
VERIFY command to attempt to close the data set
properly. In a cross-system shared DASD
environment, a return code of 116 can have two
meanings:

- The data set was not properly closed.
- The data set is opened for output on another
processor.
Note: If you use the VERIFY command, this
message can appear again when VERIFY
processing opens the data set. If VERIFY
processing then successfully closes the data set,
VERIFY processing issues condition code 0 at the
end of its processing. In addition, an empty cluster
cannot be verified.

132 One of the following errors occurred:

- Not enough storage was available for work areas.
- The format-1 DSCB or the catalog cluster record
is incorrect.

136 Not enough virtual-storage space is available in the
program's address space for work areas, control
blocks, or buffers.
416 VSAM Demystified

140 The catalog indicates this data set has an incorrect
physical record size.

160 The operands specified in the ACB or GENCB
macro are inconsistent with each other or with the
information in the catalog record. This error can
also occur when the VSAM cluster being opened is
empty.

164 An uncorrectable I/O error occurred while VSAM
was reading the volume label.

168 The data set is not available for the type of
processing specified, or an attempt was made to
open a reusable data set with the reset option while
another user had the data set open.

184 An uncorrectable I/O error occurred while VSAM
was completing an I/O request.

190 An incorrect high-allocated RBA was found in the
catalog entry for this data set. The catalog entry is
bad and will have to be restored.

192 An unusable data set was opened for output.

193 The interrupt recognition flag (IRF) was detected
for a data set opened for output processing.

194 Direct access of a compressed data component is
not allowed.

200 Volume is unusable.

212 The ACB MACRF specification is GSR or LSR and
the data set requires create processing.

232 Reset (ACB MACRF=RST) was specified for a
nonreusable data set and the data set is not empty.

240 Format-4 DSCB and catalog time stamp verification
failed during volume mount processing for output
processing.

– For a Logical I/O Error

4 End of data set encountered (during sequential
retrieval), or the search argument is greater than
the high key of the data set. Either no EODAD
routine is provided, or one is provided and it
returned to VSAM and the processing program
issued another GET.
 Appendix B. Miscellaneous performance items 417

8 You attempted to store a record with a duplicate
key, or there is a duplicate record for an alternate
index with the unique key option.

12 You attempted to store a record out of ascending
key sequence in skip-sequential mode; record had
a duplicate key; for skip-sequential processing,
your GET, PUT, and POINT requests are not
referencing records in ascending sequence; or, for
skip-sequential retrieval, the key requested is lower
than the previous key requested. For shared
resources, buffer pool is full.

16 Record not found.

20 Record already held in exclusive control by another
requester.

28 Data set cannot be extended because VSAM
cannot allocate additional direct-access storage
space. Either there is not enough space left to
make the secondary allocation request, you
attempted to increase the size of a data set while
processing with SHROPT=4 and DISP=SHR, or
the index CI is not large enough to hold the entire
CA. This error could also be due to a data set trying
to extend beyond 4GB on a system that does not
support extended addressability.

32 An RBA specified that does not give the address of
any data record in the data set.

40 Insufficient virtual storage in the user's address
space to complete the request.

116 During initial data set loading (that is, when records
are being stored in the data set the first time it's
opened), GET, POINT, ERASE, direct PUT, and
skip-sequential PUT with OPTCD=UPD are not
allowed. During initial data set loading, VERIFY is
not allowed except for an entry-sequenced data set
(ESDS) defined with the RECOVERY option. For
initial loading of a relative record data set, the
request was other than a PUT insert.

128 A loop exists in the index horizontal pointer chain
during index search processing.

144 Incorrect pointer (no associated base record) in an
alternate index.
418 VSAM Demystified

156 An addressed GET UPD request failed because
the control interval flag was on, or an incorrect
control interval was detected during keyed
processing. In the latter case, the control interval is
incorrect for one of the following reasons:

- A key is not greater than the previous key.
- A key is not in the current control interval.
- A spanned record RDF is present.
- A free space pointer is incorrect.
- The number of records does not match a group
RDF record count.
- A record definition field is incorrect.
- An index CI format is incorrect.

212 Unable to split index; increase index CI size.

236 Validity check error for SHAREOPTIONS 3 or 4.

245 A severe error was detected by the compression
management services (CMS) during compression
processing.

246 A severe error was detected by the compression
management services (CMS) during
decompression processing.

250 A valid dictionary token does not exist for the
compressed data set. The data record cannot be
decompressed.

254 I/O activity on the data set was not quiesced before
the data set was closed.

� IDC3350I synad[SYNAD]message[from VSAM]

Explanation: An I/O error occurred for a VSAM data set. The message text,
format, and explanation of VSAM I/O errors are provided in DFSMS/MVS
Macro Instructions for Data Sets.

� IEC070I rc[(sfi)]- ccc,jjj,sss,ddname, dev,ser,xxx,dsname,cat

Explanation: An error occurred during EOV (end-of-volume) processing for a
VSAM data set. In the message text:

rc Reason code. This field indicates the reason for the
error. The reason codes, their meanings, and the
corresponding system action and required responses
are listed under message IEC161I.

 sfi Subfunction information (error information returned by
another subsystem or component). This field appears
 Appendix B. Miscellaneous performance items 419

only for certain return codes, and its format is shown
with those codes to which it applies.

ccc Problem Determination (PDF) Function code. The
PDF code is for use by IBM if further problem
determination is required. If the PDF code has
meaning for the user, it will be documented with the
corresponding Reason Code (rc).

IEC070I RC32 , RC202 , RC8 , RC18 , RC24 , RC104 , RC203 MSGIEA000I
IOS000I CMD REJ, COMMAND REJECT

ADR970E HSM MISSING CI within SEQUENCE SET TRACK TRACKS TRK TRKS TRKS=0
TRACKS=0 EXTENT

IDCAMS EXAMINE messages
The most frequent error messages issued by EXAMINE command are:

IDC01714I ERROR LOCATED at OFFSET xxx

IDC01720I INDEX CONTROL INTERVAL DISPLAY at RBA xxx FOLLOWS

IDC11703I DUPLICATE KEYS in INDEX

IDC11704I INDEX KEYS are NOT in SEQUENCE

IDC11705I INDEX RECORD CONTAINS DUPLICATE INDEX POINTERS

IDC11707I DUPLICATE INDEX POINTERS FOUND in SEQUENCE SET

IDC11711I INDEX CONTROL INTERVAL COUNT ERROR

IDC11715I INDEX HIGH-USED RBA is NOT a MULTIPLE of CI SIZE IDC11724I DATA
COMPONENT CA NOT KNOWN to SEQUENCE SET IDC11725I SEQUENCE SET RBA
INCONSISTENT with VSAM- MAINTAINED RBA

IDC11727I INDEX HIGH-USED RBA GREATER THAN HIGH-ALLOCATED

IDC11728I DATA FOUND in EMPTY CI

IDC11733I DATA COMPONENT KEY SEQUENCE ERROR MSGIDC11758I SOFTWARE EOF FOUND
in INDEX CI

IDC11763I RBA of INDEX CI GREATER THAN HIGH-USED RBA IDC11771I INVALID RBA
GENERATED

IDC11772I HORIZONTAL POINTER CHAIN LOOP
420 VSAM Demystified

Appendix C. Catalog performance

In this appendix we discuss various aspects of catalog performance:

� Catalog performance

� Catalog CPU consumption

� Hints and tools to analyse performance problems related with catalogs.

C

© Copyright IBM Corp. 2001, 2003. All rights reserved. 421

Performance
As the number of systems sharing resources grow in today's parallel sysplex
environment, contention for resources can increase resulting in slower response
times or reduced throughput. One of the resources that could have increased
contention is a catalog. Elongation of catalog requests has the potential to not
only effect the performance of work within the system performing the request, but
can effect other systems in the sysplex as well.

There have been performance enhancements made to the catalog sharing
protocol and to the component that manages these requests, Global Resource
Serialization (GRS). These should be investigated if they have not already been
implemented as they were designed for environments where there are many
systems sharing resources.

Enhanced Catalog Sharing
DFSMS/MVS V1R5 introduced Enhanced Catalog Sharing (ECS) which offered
an alternative to the VVDS mode of sharing that was introduced in DFP V3. If
catalog sharing is done in VVDS mode, information is read from the VVDS on the
volume where the catalog is allocated to see if the catalog has been changed by
another system since the last time it was accessed by the system wanting to
access the catalog. This requires multiple ENQs and I/O. With ECS, the VVDS is
moved into a coupling facility reducing the serialization and I/O requirements that
VVDS mode has.

GRS configuration
GRS Star configuration was introduced in OS/390 V1R2 and is an excellent
alternative to GRS Ring configuration.

In a GRS Ring configuration, the sharing systems communicate with each other
via channel-to-channel connections or use XCF. The primary means for passing
information is the ring system authority message (RSA-message). The
RSA-message contains the information each system needs to protect the
integrity of resources. The RSA-message passes from one system in the ring to
another. No system can grant a request for a global resource until the other
systems in the ring know about the request. With this architecture, ENQ delay
time will increase every time a new system is added.

The introduction of GRS Star Topology provides an environment where additional
systems can be introduced into a parallel sysplex with minimal impact to
422 VSAM Demystified

resource serialization performance. GRS Star utilizes the coupling facility in a
parallel sysplex and uses it as the hub of the star. Thus, rather than passing the
RSA-message around the ring to all of the systems before a serialization request
is granted, serialization information is stored in a central location (the coupling
facility). This eliminates the overhead of communicating with all of the systems
that used to make up the Ring.

Diagnosing prolonged catalog ENQ times
When analyzing prolonged catalog ENQ times, verify:

� LPAR definition
� GRS configuration
� Catalog workload
� I/O response time and workload

Since elongation of catalog requests could be the result of increased workload,
historical data is required to determine if workload has actually increased. SMF
records 70-79 and F CATALOG,REPORT,PERFORMANCE command output can provide
information concerning workload trends and system utilization.

Prior to any diagnosis, the following tasks should be performed to gather the data
that will be required for diagnosing a perceived catalog performance problem:

� Document LPAR configuration: This can be obtained from the RMF Partition
Data Report.

� RMF records 70-79: Insure that SMFPRMxxXnn in PARMLIB includes SMF
records 70-79. Include type 79 subtype (7) for SENQ reports. Refer to z/OS
MVS System Management Facitilies (SMF), SA22-7630.

� Set up and start RMF reporting. Refer to the RMF User's Guide, SC33-7990
for setting up RMF Post Processor, Monitor II, and Monitor III sessions.

Specify ENQ(DETAIL) to report job names owning the resource, have the
longest period of contention, and who are waiting for a resource.

� Insure that the dispatching priority for CAS and GRS has been allowed to
default.

� If GRS is in ring mode:

– Insure that SYSIGGV2 is converted and SYSZVVDS is not converted.

– Set RESMIL to one.

– Run GENQRESP found in SYS1.SAMPLIB(ISGNQRSP) to determine
base response time for a GRS ENQ/DEQ request.
 Appendix C. Catalog performance 423

� Implement ENQ/RESERVE/DEQ Monitor described in chapter 3 of the z/OS
MVS Planning: Global Resource, SA22-7600 manual.

� For catalog, periodically issue the following series of commands (possibly at
the beginning of each shift):

– F CATALOG,REPORT to display CAS specifications.

– F CATALOG,REPORT,CACHE to display catalog cache hits.

– F CATALOG,LIST to display waits, etc.

– F CATALOG,REPORT,PERFORMANCE to record number of entries into catalog,
number of ENQs, etc.

– F CATALOG,REPORT,PERFORMANCE(RESET) to reset counters.

Catalog LOCATE Flow
If you suspect that catalog contention is causing bad system performance, an
understanding of how a catalog request is processed and the components
involved is needed.

The scenarios described below assume VVDS mode sharing and a GRS Ring
environment, although GRS Star could be in use. Example C-1 is the output from
a GTF trace during a catalog LOCATE request:

Example: C-1 Flow of a Catalog LOCATE request

SVC 26
SVC 56 SYSZTIOT
SVC 48 SYSZTIOT
SVC 56 SYSIGGV2 CATALOG.MVSICFM.VMASTER
SVC 56 SYSZVVDS CATALOG.MVSICFM.VMASTER
SVC 56 SYSZVVDS VOLA
SSCH 72C6
IO 72C6
SVC 48 SYSZVVDS VOLA
SVC 48 SYSZVVDS CATALOG.MVSICFM.VMASTERSVC 48 SYSIGGV2 CATALOG.MVSICFM.VMASTER
SVC 56 SYSZPCCB PCCB
SVC 48 SYSZPCCB PCCB
SVC 56 SYSIGGV2 CAT1.UCAT
SVC 56 SYSZVVDS CAT1.UCAT
SVC 56 SYSZVVDS VOLB
SSCH 7526
IO 7526
SVC 48 SYSZVVDS VOLB
SVC 48 SYSZVVDS CAT1.UCAT
SVC 48 SYSIGGV2 CAT1.UCAT
424 VSAM Demystified

The trace entries listed above are:

� SVC 26: LOCATE

� SVC56: ENQ

� SVC48: DEQ

� SSCH: Start subchannel

� IO: I/O to the device

The trace shows the resources being serialized and when I/O is performed to
obtain the requested catalog entry. The number of Locates issued and the length
of time it takes to process ENQ requests are the primary factors that determine
how long it will take to return a catalog request.

LPAR considerations
When there are systems in the parallel sysplex that are running in LPAR mode
and there are multiple partitions in one CEC competing for resources, the LPAR
definitions should be examined. The reason for this is that before CAS or GRS
can do any work, they have to be dispatched in their z/OS or OS/390 image and
the partition they are running in has to be dispatched to a physical processor. To
insure that the partitions are given enough access to the physical processors:

� Check logical CP configuration

– Number of CPs available to partition's operating system

– Operating system dispatches work to a logical processor

– LPAR associates a physical processor to a logical processor to execute
work

� Weight and capping:

– Weight specifies the amount of capacity guaranteed to partition at time of
high CPU utilization

– Capping specifies the amount of capacity that the partition is not allowed
to exceed even if their are processor resources available

– Number of logical CPUs and weight are static parameters entered on
LPAR definition panels

� Review RMF CPU and Partition reports for partition performance. The RMF
Partition Data Report can be used to gather information concerning LPAR

A situation which could cause perceived bad performance is an LPAR
environment referred to as having 'short' engines. For example, consider you
have a CEC that has 4 physical CPs, each having a capacity of 25 MIPs:
 Appendix C. Catalog performance 425

� There are 2 partitions defined each with 3 logical CPs sharing the 4 physical
CPs.
– Partition 1 has a weight of 75 and
– Partition 2 has been defined with a weight of 25 (the weight of the partition

is less than the total MIPs of the logical processors assigned to it).

Assume that this a period of time where there is high CPU activity for both
partitions.

– Partition 2 is dispatched and GRS is dispatched to one of the physical
CPs.

– Partition 2 reaches its weight limit and partition 1 requires a CP.
– The physical CP that had been assigned to partition 2 and had GRS

dispatched is taken away from partition 2 and assigned to partition 1.

The z/OS or OS/390 image that is running in partition 2 is not aware that the
physical processor has been taken away from it and the work GRS was to
perform has to wait.

The work GRS was to perform could be a serialization request from another
system that was to be passed onto another system. This serialization request
isl not granted until the GRS in partition 2 is once again assigned a physical
processor. This impacts the length of time it takes for a request to be granted
and if it is a serialization request for a catalog or VVDS, could elongate the
elapsed time of a LOCATE request.

GRS environment
Catalog requests could be prolonged due to a poorly tuned GRS configuration or
application contention for the resource. General tuning information for GRS ring
and star configurations can be found in the chapter 10 of z/OS MVS Planning:
Global Resource, SA22-7600 manual. The following information are excerpts
taken from the manual. For more detail and complete information, you should
refer to z/OS MVS Planning: Global Resource, SA22-7600.

The first step in determining what actions to take is to discriminate between a
problem with the global resource serialization complex and the applications it
serves. There are several kinds of problems that can occur which will affect
global resource serialization processing:

1. Tuning:

A poorly tuned system can elongate global resource serialization requests
(ENQ and DEQ). An example of a poorly tuned system could be

a. In a GRS Ring complex: Where some of the systems have too high a
RESMIL value.

b. In a GRS Star complex: Where the lock structure is too small, causing
excessive false contention in the lock structure.
426 VSAM Demystified

Tuning the complex will alleviate these problems.

2. Intersystem communication breakdown:

Global resource serialization relies on inter-system communication, through
XCF communication facilities, which can be either CTCs or coupling facility
signaling structures. Communication failures or delays may cause global
resource serialization to take recovery actions which can delay and/or
elongate ENQ and DEQ request processing.

3. Coupling facility availability:

The loss of a coupling facility may cause problems with a global resource
serialization ring. In star mode, if the ISGLOCK structure fails or the
containing coupling facility is lost, the systems in the sysplex cooperate to
rebuild the structure.

4. Resource allocation:

Even if your global resource serialization complex is well tuned, a combination
of applications, system utilities, and online users can impede workload
progress due to the use of resources. For example, a long running job or
utility can hold data sets exclusively, effectively blocking other jobs and users
from proceeding. In more extreme cases, it is possible that a set of requests
can cause a deadlock for resource requests by causing a situation where a
set of users requires resources held by other users. This situation can only
be remedied by breaking the deadlock, usually by canceling one or more of
the jobs in the deadlock.

To determine what the GRS configuration or environment is, issue D GRS,ALL. It
displays:

� System information
� CTC link information
� Resource contention information
� RNL change information
� The contents of all the RNLs

A subset of the D GRS,ALL command can be used to determine if the GRS
complex is operating normally. D GRS,SYSTEM displays:

� System name of each system in the GRS complex

� The state of each system in the GRS star complex
– Connecting
– Connected
– Rebuilding

� The state of each system in the GRS ring complex

– Active
 Appendix C. Catalog performance 427

– Inactive
– Quiesced
– Joining
– Restarting
– Migrating

� The communication status of each system in the GRS complex

– For a ring complex:
• Whether or not there is a functioning CTC link between this system and

the system name whose information is being displayed
• When using XCF signaling, the XCF paths being used

– For a star complex:

• The coupling facility structure name for the GRS lock structure

In aGRS Ring configuration, if the GRS complex is running without disruption,
slowdowns are usually caused by an improperly tuned ring. Delays of the
RSA message can become pronounced on larger complexes, delaying the
initiation of new workload. To speed up the ring, the installation can take one,
two, or all of the following actions:

– Speed up the RSA: Speed of the RSA message is dependent upon the
RESMIL value. Try using a RESMIL of 1 or 2 on all of the systems

– Use ring acceleration:

Reduces the number of systems that must see an ENQ before the issuing
system may grant ownership of a resource. There are possible integrity
concerns but the opportunity for such failures is small. Specifying
ACCELSYS(2) can reduce the overall response time for an ENQ/DEQ
request

– Use GRS Star configuration: Star configuration outperforms any ring
complex by orders of magnitude.

There is more information in the z/OS MVS Planning: Global Resource,
SA22-7600 manual concerning:

� Ring disruption recovery
� GRS ring rebuild
� XCF/XES connectivity and performance
� ISGLOCK structure request processing

Catalog contention
If system performance appears to be bad, RMF is good place to start with your
investigation. From the ISPF TSO command shell (option 6), enter the RMF
428 VSAM Demystified

command. This command presents you a screen with the various RMF reporting
options, as shown in In Figure C-1.

Figure C-1 RMF Monitor panel

If the application work is running slower than it was before, it could be caused by
delays. These delays could be caused by a unit of work waiting for requests to be
processed by DFSMShsm, JES, Operator Reply, GRS, and several other system
functions. From the RMF Monitor Panel, select option 3, for Monitor III. Then
Monitor III options are shown in Figure C-2.

 RMF - Performance Management z/OS V1R2 RMF
 Selection ===>

 Enter selection number or command on selection line.

 1 Postprocessor Postprocessor reports for Monitor I, II, and III (PP)
 2 Monitor II Snapshot reporting with Monitor II (M2)
 3 Monitor III Interactive performance analysis with Monitor III (M3)

 U USER User-written applications (add your own ...) (US)

 R RMFPP Performance analysis with the Spreadsheet Reporter
 P RMF PM RMF PM Java Edition
 N News What's new in z/OS V1R2 RMF

 T TUTORIAL X EXIT

 RMF Home Page: http://www.ibm.com/servers/eserver/zseries/rmf/

 5694-A01 (C) Copyright IBM Corp. 1994, 2001. All Rights Reserved
 Licensed Materials - Property of IBM
 Appendix C. Catalog performance 429

Figure C-2 RMF Monitor III Primary Menu

If a particular job is perceived to be running slowly, you can use the option 2 to
display information concerning what could be causing a job to be delayed. If it is
because of catalog ENQ contention, it will be shown RMF Job Report Selection
report. Selecting option 2 from the RMF Monitor III Primary Menu displays the
panel shown in Figure C-3.

 RMF Monitor III Primary Menu z/OS V1R2 RMF
 Selection ===>

 Enter selection number or command on selection line.

 S SYSPLEX Sysplex reports and Data Index (SP)
 1 OVERVIEW WFEX, SYSINFO, and Detail reports (OV)
 2 JOBS All information about job delays (JS)
 3 RESOURCE Processor, Device, Enqueue, and Storage (RS)
 4 SUBS Subsystem information for HSM, JES, and XCF (SUB)

 U USER User-written reports (add your own ...) (US)

 O OPTIONS T TUTORIAL X EXIT

 5694-A01 (C) Copyright IBM Corp. 1986, 2001. All Rights Reserved
 Licensed Materials - Property of IBM
430 VSAM Demystified

Figure C-3 RMF III Job Selection Menu

Then select option 2. This will tell you if ENQs are causing the delays for this
particular job.

If heavy contention for a catalog resource is suspected after using RMF, you
could use D GRS commands to further investigate. You can issue commands to
see if there is contention and if contention exists, which job is blocking other
requesters for a particular resource.

By itself, resource contention is not a sign of a problem. However, contention held
for a long period of time among the same resources and requesters may be an
indication of a problem.

GRS provides diagnostic commands to help you determine the source of
contention:

� DISPLAY GRS,CONTENTION

Provides an alphabetized list of all visible ENQ resources that are in
contention. Each resource is reported with the owners and waiters of the
resource.

The DISPLAY GRS,CONTENTION command only reports contention for
SCOPE=SYSTEM resources that are allocated on the system where the
command executed. It does not report contention for SCOPE=SYSTEM
resources on other systems in the Complex.

 RMF Job Report Selection Menu
 Selection ===>

 Enter selection number or command and jobname for desired job report.

 Jobname ===> MYJOB___

 1 DEVJ Delay caused by devices (DVJ)
 1A DSNJ .. Data set level (DSJ)
 2 ENQJ Delay caused by ENQ (EJ)
 3 HSMJ Delay caused by HSM (HJ)
 4 JESJ Delay caused by JES (JJ)
 5 JOB Delay caused by primary reason (DELAYJ)
 6 MNTJ Delay caused by volume mount (MTJ)
 7 MSGJ Delay caused by operator reply (MSJ)
 8 PROCJ Delay caused by processor (PJ)
 9 QSCJ Delay caused by QUIESCE via RESET command (QJ)
 10 STORJ Delay caused by storage (SJ)
 11 XCFJ Delay caused by XCF (XJ)
 Appendix C. Catalog performance 431

� DISPLAY GRS,ANALYZE,WAITER

Provides a list of requesters that have been waiting the longest for ENQ
resources. Each waiter is reported with:

– The resource name and scope.
– The count of waiters and blockers of the resource.
– The top blocker of the resource.

Each waiter is reported with its wait time, system resource that it was ENQed
on, and the type of access (shared or exclusive) requested. The counts of
waiters and blockers are explicitly returned only when the count is greater
than one.

� DISPLAY GRS,ANALYZE,BLOCKER

Provides a list of the requesters that have been blocking ENQ resources for
the longest time. Each blocker is reported with:

– Resource name and scope.
– The count of waiters and blockers of the resource.

The block time, system the blocker ENQed from, jobname, and the type of
access requested are also reported.

� DISPLAY GRS,ANALYZE,DEPENDENCY

Provides resource allocation dependency analysis:

a. Starting with each of the longest ENQ waiters, an analysis is performed,
iteratively chaining from waiter to top blocker until either a request that is
not waiting is found, or a resource allocation deadlock is detected.

b. Starting with the top blockers of a specified resource, an analysis is
performed, iteratively chaining from waiter to top blocker until either a
request that is not waiting is found, or a resource allocation deadlock is
detected.

The various forms of the DISPLAY GRS,ANALYZE command are available on
OS/390 Release 3 and higher with APAR OW38979 installed on the system.

The z/OS MVS Planning: Global Resource, SA22-7600manual, in chapter 10,
demonstrates how these command can be used to diagnosis suspected
contention problems.

Once it has been determined that catalog contention exists, the next step is to
determine whether it's due to the length of time it takes to satisfy a catalog
request, an increase in CAS workload, or a combination of both. The use of GRS
ENQ/RESERVE/DEQ Monitor and F CATALOG,REPORT PERFORMANCE commands
are useful tools for determining the length of ENQs and how many are being
issued.
432 VSAM Demystified

To implement the ENQ/RESERVE/DEQ Monitor, refer to chapter 2 of the z/OS
MVS Planning: Global Resource, SA22-7600manual. Once invoked, the panel
shown in Figure C-4 is displayed:

Figure C-4 ENQ / DEQ Main Menu Panel

The Main Menu panel summarizes the active GRS options and activity. Selecting
option 1, The Monitor shows the ENQ activities listed by major names, RNL
action and the number of global and local ENQs if global resource serialization is
active, as shown in Figure C-5.

 ENQ/DEQ Monitor - Main Menu

 Select an option:

 __ 1. MAJOR Names Date & Time : 2001.341 11:56
 2. Resource Name List Monitor started at : 2001.341 11:55
 3. Volume List Elapsed seconds : 22
 4. Filter List SMF System ID : WSCM
 --
 GRS Ring -> From: To: This: WSCSYSA NUMSYS: 1
 --
 Time of Delay High. . : 2001.341 11:55
 Global Requests . . . : 132 Enqueue Delay Hi - Low: 1 1
 Local Requests . . . : 174 Enqueue Delay msec: 1

 Major Names : 25 ACCELSYS. : 0
 Minor Names : 63 RESMIL msec: 0
 Volumes : 19 Data Space Used .bytes: 12529 0 %
 Number of Events. . . : 633 Active Filter.: 08
 Lost Events : 0 Events Rate : 263

 Command ===> __
 Appendix C. Catalog performance 433

Figure C-5 ENQ / DEQ Monitor: Major Name List Option

Once the Major Name List panel is displayed, you can use L SYSIGGV2 to find if
there are any ENQs for catalog resources. Select the Major name SYSIGGV2,
see Figure C-6.

Figure C-6 ENQ / DEQ Monitor: locating a major name

 ENQ/DEQ Monitor - Major Name List Row 1 to 14 of 46

 Enter S to select a Major Name for details .
 L major on command line to locate a Major. Elapsed seconds: 732

 Sel. ---------- ----- ---- ----- ------- -Average- -Reserved-
 Field Major Name Scope Exit RNL Counter msec seconds
 _ ARCENQG SYSS 27
 _ ARCENQL SYS 1
 _ ARCGPA RES FORCE 281 34 9
 _ ARCGPA SYS 7
 _ BLXDASDS SYS 165
 _ CHANGEQU SYSS 74
 _ DVG221 SYS 84
 _ DVG221QH SYS 42
 _ IGDCDSXS RES FORCE 49 49 2
 _ SIBIXFP SYS 21
 _ SPFEDIT RES FORCE 25 460 10
 _ SPFEDIT SYSS 60
 _ SYSDSN SYS 331
 _ SYSIEFSD SYS 1292

 Command ===> L SYSIGGV2

 ENQ/DEQ Monitor - Major Name List Row 16 to 29 of 46

 Enter S to select a Major Name for details .
 L major on command line to locate a Major. Elapsed seconds: 732

 Sel. ---------- ----- ---- ----- ------- -Average- -Reserved-
 Field Major Name Scope Exit RNL Counter msec seconds
 s SYSIGGV2 RES FORCE 1362 8 10
 _ SYSIKJBC SYS 28
 _ SYSIKJPL SYS 431
 _ SYSVSAM SYSS 14
 _ SYSVTOC RES FORCE 96 27 2
 _ SYSZ#SSI SYS NO 5
 _ SYSZALCF SYS 3
434 VSAM Demystified

After selecting major name SYSIGGV2 a minor name list is displayed, as shown
in Figure C-7.

Figure C-7 ENQ / DEQ Monitor: Minor Name List

Selecting a minor name will display the job and program names with an
indication of exclusive or shared use:

Figure C-8 ENQ / DEQ Monitor: Jobname List

From these displays, you can find which catalogs have high activity and how long
it takes to process ENQ serialization requests for these catalogs.

In addition to RMF and the ENQ/RESERVE/DEQ Monitor, the F
CATALOG,REPORT,PERFORMANCE command can provide data concerning the
number of entries into the catalog address space, the number of serialization

 ENQ/DEQ Monitor - Minor Name List Row 1 to 8 of 24

 Minor Name list for: Major Name : SYSIGGV2
 RNL : FORCED
 Scope . . . : RESERVE
 Reserved sec: 10 Avg msec: 8

 Enter S to select a Minor Name for Jobnames .
 L min. on command line to locate a Minor. Elapsed seconds: 732

 Interval
 - --Rate- ----- ------ ------------------------ ------------ Time ------------
 S min. Count Volume Minor name (max 24 char) Avg ms Min ms Max ms Tot sec
 s 0 4 DB2710 CATALOG.DB2710 6 6 8 0
 _ 0 3 CICSTS ICFCAT.CICSTS 24 6 61 0
 _ 5 56 SMSN01 ICFCAT.IBMBOOKS 6 5 30 0
 _ 164 1 IMS610 ICFCAT.IMS610 62 62 62 0
 _ 1 29 SMS019 ICFCAT.SMSUCAT1 6 6 8 0
 _ 22 663 SMS011 ICFCAT.SMSUCAT2 8 6 147 5
 _ 10 257 SMS015 ICFCAT.SMSUCAT3 10 6 121 2

 ENQ/DEQ Monitor - Jobname List Row 1 to 1 of 1

 List for Major Name : SYSIGGV2
 Minor Name : CATALOG.DB2710
 Minor Length: 20
 -------- -------- ---------- -------- --- ----------
 Job_name User_ID Enqs x Job Pgm_name E/S Enqs x PGM
 CATALOG * 6 IGGPACDV S 6
 ******************************* Bottom of data ********************************
 Appendix C. Catalog performance 435

requests CAS has issued, and how long these requests take before being
granted. Figure C-9 shows part of the output of the command:

Figure C-9 F CATALOG,REPORT, PERFORMANCE output

There is more information returned from the command but the above data is what
is pertinent to diagnosing catalog contention. This report tells you how many
entries have been made into CAS, how many exclusive and shared ENQs have
been issued to catalogs and VVDSs since the counters were last reset with F
CATALOG,REPORT,PERFORMANCE(RESET). If the command has been issued over a
period of time, the report reveals workload and ENQ response time trends.

Catalog Contention Summary
After reviewing the RMF reports, output of the D GRS and the F CATALOG
commands, it should be possible to determine if ENQ response times and/or
CAS workload have increased. If efforts to tune GRS do not result in lower or
acceptable ENQ response times, or if the GRS ring is operating as efficiently as
possible and the elongation is due to increased CAS activity for a particular
catalog, the only option available is to investigate the possibility of splitting the
catalog in question.

You use automation to issue F CATALOG commands in interval time, saving the
output in data sets (using Generation Data Group), and then analyze
the outputs. To save the command output in a data set you can use
two ways:
1. SDSF batch, see sample in Figure C-10. Refer to z/OS SDSF Operation an

Customization, SA22-7670 for more information about SDSF batch.

F CATALOG,REPORT,PERFORMANCE
 IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
 IEC359I CATALOG PERFORMANCE REPORT 913
 *CAS***
 * -----CATALOG EVENT---- --COUNT-- ---AVERAGE--- *
 * Entries to Catalog 80,789 17.716 MSEC *
 * BCS ENQ Shr Sys 105,214 0.223 MSEC *
 * BCS ENQ Excl Sys 1,673 0.455 MSEC *
 * BCS DEQ 125,748 0.155 MSEC *
 * VVDS RESERVE CI 5,199 1.302 MSEC *
 * VVDS DEQ CI 5,199 0.192 MSEC *
 * VVDS RESERVE Shr 135,295 0.188 MSEC *
 * VVDS RESERVE Excl 392 0.217 MSEC *
 * VVDS DEQ 135,687 0.150 MSEC *
436 VSAM Demystified

Figure C-10 F CATALOG Command in SDSF batch

2. For REXX, see samples in Example C-2, Example C-4 on page 440,
Example C-5 on page 440, and the JCL in Example C-3 on page 439. You
can customize these samples REXX and JCL and use a scheduler, like OPC,
to run periodically and collect catalog performance data.

Example: C-2 CATPERF REXX to issue F CATALOG command

/* REXX */
/* THIS IS A REXX EXEC TO ISSUE F CATALOG,REPORT,PERFORMANCE */
/* COMMANDS AND WRITE THE OUTPUT TO A DATA SET */
/* */
/***/
'ALLOC F(OUTP) DA(REPORT.OUT) OLD'
SOLD=0
UNSOLD=0
X=MSG("ON")
/**/
/* REXX */
/* THIS will check CONSPROF profile and enter CONSOLE */
/* mode to issue F CATALOG,REPORT commands. */
/**/
X=OUTTRAP('CONDIS.','*')
"CONSPROF"
X=OUTTRAP('OFF')
IF RC > 0 THEN DO
 SAY "ERROR IN CONSPROF."
 EXIT
END
PARSE VAR CONDIS.1 W1 W2 W3 W4 W5
IF SUBSTR(W1,1,3) = 'IKJ' THEN
 DO

//SDSF EXEC PGM=SDSF,PARM='++60,132'
//ISFOUT DD SYSOUT=A
//OUTPUT DD DSN=...
//ISFIN DD *
ULOG
 /F CATALOG,REPORT,PERFORMANCE
REFRESH
REFRESH
REFRESH
REFRESH
REFRESH
PRINT FILE OUTPUT
PRINT
PRINT CLOSE
 Appendix C. Catalog performance 437

 IF RIGHT(W2,4)="YES)" THEN
 DO
 ADDRESS "TSO" "CONSPROF SOLDISPLAY(NO)"
 SOLD=1
 END
 IF RIGHT(W4,4)="YES)" THEN
 DO
 ADDRESS "TSO" "CONSPROF UNSOLDISPLAY(NO)"
 UNSOLD=1
 END
 END
IF SUBSTR(W1,1,3) <> 'IKJ' THEN
 DO
 IF RIGHT(W2,4)="YES)" THEN
 DO
 ADDRESS "TSO" "CONSPROF SOLDISPLAY(NO)"
 SOLD=1
 END
 IF RIGHT(W4,4)="YES)" THEN
 DO
 ADDRESS "TSO" "CONSPROF UNSOLDISPLAY(NO)"
 UNSOLD=1
 END
 END
X=MSG('off')
z=0
"CONSOLE ACTIVATE"
ADDRESS CONSOLE "F CATALOG,REPORT,PERFORMANCE"
DO WHILE rc = 0
 rc='GETMSG'(MVSCMD.,,,,5)
 IF rc = 0 THEN DO
 I = 1
 DO I = 1 TO MVSCMD.0
 IF z = 0 THEN
 DO
 date = mvscmd.mdbgdstp
 time = mvscmd.mdbgtimh
 QUEUE "Date: "||date||" Time: "||time
 END
 QUEUE mvscmd.i
 z = 1
 END
 END
END
DO i = 1 to queued()
 ADDRESS MVS 'EXECIO 1 DISKW OUTP'
END
ADDRESS MVS 'EXECIO 0 DISKW OUTP (FINIS'
X=MSG('ON')
438 VSAM Demystified

'FREE FI(OUTP)'
"CONSOLE DEACTIVATE"
IF SOLD=1 THEN ADDRESS "TSO" "CONSPROF SOLDISPLAY(YES)"
IF UNSOLD=1 THEN ADDRESS "TSO" "CONSPROF UNSOLDISPLAY(YES)"
EXIT

Example: C-3 JCL to run REXX in batch and copy the output to a GDG

//jobname JOB jobcard info
//TSOCMD1 EXEC PGM=IKJEFT01,REGION=4096K
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 EXEC 'userid.CATREP.PERF(CATDATE)'
/*
//IEBGEN1 EXEC PGM=IEBGENER,COND=(1,NE)
//SYSPRINT DD SYSOUT=X
//SYSIN DD DUMMY
//SYSUT1 DD DSN=userid.REPORT.OUT,DISP=SHR
//SYSUT2 DD DSN=userid.CATREP.OUT(+1),DISP=(NEW,CATLG),
// LIKE=userid.REPORT.OUT
//TSOCMD2 EXEC PGM=IKJEFT01,REGION=4096K
//SYSTSPRT DD SYSOUT=*
//SYSUADS DD DSN=SYS1.UADS,DISP=SHR
//SYSUADN DD DSN=SYS1.UADS,DISP=SHR
/*
//IEBGEN1 EXEC PGM=IEBGENER,COND=(1,NE)
//SYSPRINT DD SYSOUT=X
//SYSIN DD DUMMY
//SYSUT1 DD DSN=userid.REPORT.OUT,DISP=SHR
//SYSUT2 DD DSN=userid.CATREP.OUT(+1),DISP=(NEW,CATLG),
// LIKE=userid.REPORT.OUT
//TSOCMD2 EXEC PGM=IKJEFT01,REGION=4096K
//SYSTSPRT DD SYSOUT=*
//SYSUADS DD DSN=SYS1.UADS,DISP=SHR
//SYSUADN DD DSN=SYS1.UADS,DISP=SHR
//SYSLBC DD DSN=SYS1.BRODCAST,DISP=SHR
//SYSTSIN DD *
 EXEC 'userid.CATREP.PERF(CATPERF)'
/*
 Appendix C. Catalog performance 439

Example: C-4 CATDATE REXX

/* rexx */
date = date('j')
'ALLOC F(OUTP) DA(REPORT.OUT) SHR'
ADDRESS MVS 'EXECIO * DISKR OUTP (FINIS'
DO x = 1 to queued()
 PARSE PULL record
 IF SUBSTR(record,1,4) = 'Date' THEN DO
 rdate = SUBSTR(record,9,5)
 IF rdate ¬= date THEN CODE=1
 END
END
'FREE FI(OUTP)'
IF CODE = 1 THEN EXIT 1
EXIT

Example: C-5 CATDATE REXX

/* rexx */
date = date('j')
'ALLOC F(OUTP) DA(REPORT.OUT) SHR'
ADDRESS MVS 'EXECIO * DISKR OUTP (FINIS'
DO x = 1 to queued()
 PARSE PULL record
 IF SUBSTR(record,1,4) = 'Date' THEN DO
 rdate = SUBSTR(record,9,5)
 IF rdate ¬= date THEN CODE=1
 END
END
'FREE FI(OUTP)'
IF CODE = 1 THEN EXIT 1
EXIT
440 VSAM Demystified

Appendix D. Information APARs

In this appendix we list several information APARs that deal with VSAM data
collection and problem determination.

D

© Copyright IBM Corp. 2001, 2003. All rights reserved. 441

II12927 - Documentation for VSAM problems
Item II12927
 APAR Identifier II12927 Last Changed 02/11/14
 INFO APAR TO PROVIDE GUIDELINES FOR DOCUMENTATION NEEDED BY VSAM
 CATALOG, IDCAMS LEVEL2 TO SOLVE COMMON CATEGORIES OF PROBLEMS.

 Symptom DD DOC Status INTRAN
 Severity 4 Date Closed
 Component INFOV2LIB Duplicate of
 Reported Release 001 Fixed Release
 Component Name V2 LIB INFO ITE Special Notice
 Current Target Date .. Flags
 SCP
 Platform

 Status Detail: Not Available

 PE PTF List:

 PTF List:

 Parent APAR:
 Child APAR list:

 ERROR DESCRIPTION:
 This info apar outlines the documentation requirements for VSAM,
 CATALOG, RLS and IDCAMS L2 diagnosis of general problems.
 Specific problem scenarios may require additional documentation.
 This is designed to assist customers in determining what
 documentation to gather before reporting the problem to IBM.
 ###

 Questions before the documentation-gathering process:
 1. Did this problem just occur "out of the blue" or did
 something recently change in your environment, such as the
 installation of software or hardware maintenance?
 2. Did the problem occur only one time?
 3. Can you recreate the problem?
 .
 .
 The following are documentation requirements for CATALOG
 problems:

 ABENDS
 - SVC dump of the abend
442 VSAM Demystified

 - Syslog (at the time of the abend)
 .
 BROKEN DATA SET
 (Please see II08859 for more details)
 .
 - SYSLOG/JOBLOG (including all messages, JCL and commands)
 - EXAMINE (both ITEST and DTEST) output
 - LISTCAT ALL output
 - DIAGNOSE output
 .
 .
 BROKEN CATALOG
 - LISTCAT ENT(catname)ALL CATALOG(catname)
 - DIAGNOSE vvds
 DIAGNOSE bcs
 DIAGNOSE COMPARE vvds to bcs
 DIAGNOSE COMPARE bcs to vvds
 ***Please see Chapter 22 of the DFSMS/MVS
 ACCESS METHOD SERVICES for the INTEGRATED
 CATALOG FACILITY for DIAGNOSE examples***
 - EXAMINE (both ITEST and DTEST)
 - any error messages from joblog
 .
 The following are documentation requirements for VSAM problems:
 .
 PERFORMANCE

 See II10752.
 - provide a clear and adequate description
 - what is not performing properly
 - what is the basis for the performance expectation
 - what changes appear to trigger the performance change
 * maintenance, release, application?

 - dump of CAS (and associated user ASIDs) before any
 recovery actions...if Catalog is involved
 - performance report
 - comparison report (what was performing in the last release)
 *** We will only diagnose if the problem is defect-related ***
 .
 HANG/WAIT/LOOP
 - dump of CAS (and associated ASIDs)...if Catalog is involved
 - dump from all the systems in the sysplex
 .
 The following are DOC requirements for RLS (SMSVSAM) problems:
 .
 1. To dump SMSVSAM ASIDs on all systems at the same time.
 .
 Appendix D. Information APARs 443

DUMP COMM=(Some meaningful dump title),
Rnn,JOBNAME=(SMSVSAM),CONT
Rnn,SDATA=(GRSQ,RGN,ALLNUC,LPA,LSQA,CSA,PSA,SQA,SUM,SWA,TRT)
Rnn,DSPNAME=('SMSVSAM',*),
Rnn,REMOTE=(SYSLIST=*('SMSVSAM'),DSPNAME,SDATA),END

2. This will dump SMSVSAM and XCF on the local system and dump
 SMSVSAM XCF w/ DSPNAME and SDATA on all the systems in the
 sysplex.
 DUMP COMM=(SMSVSAM and XCF)
 RXX,JOBNAME=(SMSVSAM,XCFAS),DSPNAME=('XCFAS'.*,'SMSVSAM'.*),CONT
 RYY,SDATA=(GRSQ,RGN,ALLNUC,LPA,LSQA,CSA,PSA,SQA,SUM,SWA,TRT), CONT
 R ZZ,REMOTE=(SYSLIST=(*,('XCFAS','SMSVSAM',DSPNAME,SDATA)))
 .
 To DUMP the SMSVSAM asid, SMSVSAM data spaces and CICS regions
 involved.
 .
 DUMP COMM=(CICS & SMSVSAM HANG)
 R nn,JOBNAME=(SMSVSAM, CICS1, CICS2, CICS3, ETC),
 R nn,DSPNAME=('SMSVSAM'.*), END
 R nn,SDATA=(PSA,NUC,SQA,LSQA,SUM,RGN,GRSQ,LPA,TRT,CSA),CONT
 R nn,REMOTE=(SYSLIST=*('SMSVSAM'),DSPNAME,SDATA),END
 where CICS1, CICS2, CICS3, ETC are the names of the CICS regions.
 .
 The following are documentation requirements for IDCAMS problems:
 .
 - Syslog (including all messages, JCL and commands) from the batch job that
received the OPEN error
 - VERIFY output
 - LISTCAT ALL output
 - EXAMINE (ITEST and DTEST)
 - DIAGNOSE

II13326 - Common problems with SHCDS
Item II13326
 APAR Identifier II13326 Last Changed 02/11/04
 COMMON PROBLEMS FROM SHCDS DEFINITION AND USAGE. PLEASE REVIEW
 THIS INFO APAR IF RECEIVE ABEND0F4 RSN673F0614 673F0614.

 Symptom IN INCORROUT Status INTRAN
 Severity 4 Date Closed
 Component INFOV2LIB Duplicate of
 Reported Release 001 Fixed Release
 Component Name V2 LIB INFO ITE Special Notice
 Current Target Date .. Flags
444 VSAM Demystified

 SCP
 Platform

 Status Detail: Not Available

 PE PTF List:

 PTF List:

 Parent APAR:
 Child APAR list:

 ERROR DESCRIPTION:
 Due to a number of problems we've been seeing in the field
 from new customers, we decide to put together this informational
 APAR to help guide you through the process of setting up and
 trouble-shooting problems with SMSVSAM/RLS shared control
 dataset (SHCDS).
 .
 PART 1: SHCDS DEFINITION
 .
 Here is a checklist that you need to run through to make sure
 you have defined your SHCDS properly:
 1- See 14.1.6 Defining Sharing Control Data Sets in DFSMSdfp
 Storage Admin. Reference for details. Also see section
 14.1.10 Establishing Authorization for VSAM RLS in DFSMSdfp
 Storage Administration Reference.
 2- SHCDS must be a VSAM Linear data set.
 3- CISIZE for SHCDS must be 4096. Make sure that if you are
 using a Dataclass you are getting 4096.
 4- Shareoptions must be (3,3).
 5- Secondary extents are strongly recommended.
 6- Initial size of the SHCDS needs to be large enough.
 7- When defined, the SHCDS does not need to be catalogued on
 all systems in the sysplex. If it is cataloged, it must be in
 a catalog available when SMSVSAM initializes. The user
 may issue the command, Vary SMS,SHCDS(dsname),NEW
 and Vary SMS,SHCDS(dsname),NEWSPARE from any
 system in the sysplex, not just from the system where the
 SHCDS was defined and catalogued originally. SMSVSAM
 will attempt to re-catalog the SHCDS if it cannot find the
 SHCDS in a catalog on that system.
 8- SMSVSAM must be authorized to update SYS1.DFPSHCDS.*
 data sets.
 If you protect SYS1.* data sets be sure SMSVSAM is
 able to access SYS1.DFPSHCDS.* for update.
 9- Follow the SHCDS naming convention. The SHCDS name must
 Appendix D. Information APARs 445

 match the volume that it resides on. That is,
 SYS1.DFPSHCDS.firstnam.Vvolser resides on volume volser
 Note: APAR OW49746 prevents addition of a SHCDS if the SHCDS is
 not linear or if the CISIZE is not 4096.
 .
 The SHCDS may be defined using IDCAMS. Here is an example:
 //*--
 //* ALLOCATE ON XP0301 - GUARANTEED SPACE IS SXPXXS04
 //*--
 //ALLOCLD1 EXEC PGM=IDCAMS
 //SYSPRINT DD SYSOUT=*
 //SYSIN DD *
 DEFINE CLUSTER (NAME(SYS1.DFPSHCDS.ACTIVE3.VXP0301) LINEAR -
 STORCLAS(SXPXXS04) -
 SHAREOPTIONS(3 3) CYL(20 20) VOLUME(XP0301))
 /*
 .
 PART 2: COMMON USAGE PROBLEMS
 .
 For suspected problems with the SHCDS, look for messages

 starting with IGW6, such as IGW615I. Also look for messages
 that indicate a security problem with your SHCDS.
 .
 A- Problem: Sharing Control Data Sets are added, but when
 when SMSVSAM is recycled or the system is IPLed, the SHCDS
 are deleted during initialization.
 Possible solutions:
 1- SHCDS is not correctly defined. See "SHCDS Definition"
 above. Redefine SHCDS.
 2- SMSVSAM does not have proper access to the SHCDS.
 Examine the Syslog for error messages indicating problems
 with the SYS1.DFP. Set up access properly.
 B- Problem: SMSVSAM initialization is not proceeding.
 Use the command, D SMS,SMSVSAM. If the response indicates
 that SMSVSAM is in SHC_Ph2_Init:
 .
 IGW420I DISPLAY SMS,SMSVSAM
 DISPLAY SMS,SMSVSAM - SERVER STATUS
 SYSNAME: SYSTEM2 UNAVAILABLE ASID: 00FC STEP: SHC_Ph2_Init
 .
 You should have received some IGW6* messages, such as
 IGW611A or IGW609A, prior to this point. Look for these
 messages in the Syslog. Issue the command, D SMS,SHCDS.
 Examine the "Status" column. Make sure that you have at least
 2 active SHCDS and 1 Spare SHCDS. A common error is to forget
 to add a Spare SHCDS or to add three actives instead of
 2 actives and a spare.
446 VSAM Demystified

 .
 PART 3: COMMON TASKS
 .
 You may want to swap in a new set of SHCDS, because you want to
 increase the size of the SHCDS or you want to change the volume
 where the SHCDS resides. You must use the VARY SMS,SHCDS
 command when making changes to the SHCDS in order for SMSVSAM
 to know about the SHCDS. Do not delete an active or spare SHCDS
 even if SMSVSAM is not active. Do not move a SHCDS from one
 volume to another, because the SHCDS naming convention depends
 on the volume to match the SHCDS name.
 .
 NOTE: Do not delete and redefine an active or spare SHCDS
 without first deleting the SHCDS from SMSVSAM using the
 command - V SMS,SHCDS(shcdsname),DELETE. SMSVSAM remembers
 the SHCDSs from one SMSVSAM recycle to the next. You must
 tell SMSVSAM that the SHCDS is no longer an active or
 spare SHCDS.
 .
 A common error is to delete and redefine the SHCDS without
 deleting the SHCDS from SMSVSAM - for example, when
 SMSVSAM is not active. The correct way to communicate
 changes for the SHCDS is through the command - V SMS,SHCDS.
 Once you have deleted a SHCDS using the command
 V SMS,SHCDS(shcdsname),DELETE, you can then safely use
 IDCAMS DELETE and DEFINE to modify your SHCDS.
 .
 NOTE: Do not move a SHCDS from one volume to another,

 because the SHCDS naming convention depends on the volume
 to match the SHCDS name.
 Remember that once you've added 2 Active SHCDS and 1 Spare SHCDS
 you will not be allowed delete them when using the command, Vary
 SMS,SHCDS(dsname),delete. To make a swap, you must add the new
 SHCDS first and delete the old SHCDS to make sure you stay
 within criteria. For example, if you have:
 .
 16.40.09 SYSTEM1 d sms,shcds
 IGW612I 16:40:10 DISPLAY SMS,SHCDS
 Name Size %UTIL Status Type
 TOOSMALL.VXP0301 7200Kb 5% GOOD ACTIVE
 TOOSMALL.VXP0302 7200Kb 5% GOOD ACTIVE
 WRONGVOL.VXP0201 7200Kb 5% GOOD SPARE
 .
 Issue these commands:
 V SMS,SHCDS(JUSTRITE.VXP0301),NEW
 V SMS,SHCDS(JUSTRITE.VXP0302),NEW
 V SMS,SHCDS(RIGHTVOL.VXP0202),NEWSPARE
 Appendix D. Information APARs 447

 .
 Now you have:
 SYSTEM1 d sms,shcds
 IGW612I 16:45:49 DISPLAY SMS,SHCDS
 Name Size %UTIL Status Type
 TOOSMALL.VXP0301 7200Kb 5% GOOD ACTIVE
 TOOSMALL.VXP0302 7200Kb 5% GOOD ACTIVE
 JUSTRITE.VXP0301 14400Kb 2% GOOD ACTIVE
 JUSTRITE.VXP0302 14400Kb 2% GOOD ACTIVE
 WRONGVOL.VXP0201 7200Kb 5% GOOD SPARE
 RIGHTVOL.VXP0202 7200Kb 5% GOOD SPARE
 .
 Then you can issue:
 V SMS,SHCDS(TOOSMALL.VXP0301),DELETE
 V SMS,SHCDS(TOOSMALL.VXP0302),DELETE
 V SMS,SHCDS(WRONGVOL.VXP0201),DELETE
 .
 Which will leave you with:
 SYSTEM1 d sms,shcds
 IGW612I 16:47:07 DISPLAY SMS,SHCDS
 Name Size %UTIL Status Type
 JUSTRITE.VXP0301 14400Kb 2% GOOD ACTIVE
 JUSTRITE.VXP0302 14400Kb 2% GOOD ACTIVE
 RIGHTVOL.VXP0202 7200Kb 5% GOOD SPARE
 See 4.56.12 Changing the State of Coupling Facility Cache
 Structures and Volumes in MVS System Commands for information
 on the VARY command.
 .
 PART 4: SYMTOMS OF HAVING PROBLEMS WITH SHCDS DEFINITION/USAGE
 .
 The following symptoms result from this set of steps.
 Please note that this is NOT a valid way to change the
 way the SHCDSs are defined. See the section above for the
 recommended way of redefining your SHCDS.
 - Terminate SMSVSAM
 - Delete all SHCDSs (could also happen if delete some SHCDSs)

 - Redefine SHCDSs
 - Bring up SMSVSAM
 .
 DUMP00 TITLE=COMPID=DF122,CSECT=IGWXSS90+0890,DATE=10/13/01,
 MAINTID= NONE ,ABND=0F4,RC=00000024,RSN=67260989
 .
 DUMP01 TITLE=COMPID=DF122,CSECT=IGWXSS91+0628,DATE=10/13/01,
 MAINTID= NONE ,ABND=0F4,RC=00000024,RSN=67610382
 RSN67610382 67610382
 .
 --
448 VSAM Demystified

 SHCDS has CISIZE=6K and is added successfully.
 Things can go along fine for a while and then you get :
 DUMP00 TITLE=COMPON=MEDIA MANAGER, COMPID=DF106, ISSUER=ICYFRR
 DUMP TAKEN TIME=15.06.59 DATE=05/31/2002
 SYSTEM ABEND CODE=0C4 REASON CODE=00301314
 MODULE=IEANUC01 CSECT=ICYSTOR
 --
 Non-linear SHCDS - defined as a PS or whatever is default:
 On system2:
 15.46.35 SYSTEM2 IGW602E ADD SHARE CONTROL DATA SET FAILED,
 SYS1.DFPSHCDS.NONLINNC.VSPLXP2 IS NOT A VSAM LINEAR DATA SET
 On system1:
 15.46.35 SYSTEM2 IGW602E ADD SHARE CONTROL DATA SET FAILED,
 SYS1.DFPSHCDS.NONLINNC.VSPLXP2 IS NOT A VSAM LINEAR DATA SET
 .
 then later:
 DUMP00 TITLE=COMPON=MEDIA MANAGER, COMPID=DF106, ISSUER=ICYFRR
 SYSTEM ABEND CODE=0C4 REASON CODE=00301314
 MODULE=IEANUC01 CSECT=ICYSTOR
 --
 During Server initialization, insufficient access authority
 to SHCDS. Previously defined SHCDS are deleted.
 ICH408I JOB(SMSVSAM) STEP(SMSVSAM) 744
 SYS1.DFPSHCDS.ACTIVE2.VSPLXPK CL(DATASET) VOL(USRPAK)
 INSUFFICIENT ACCESS AUTHORITY
 FROM SYS1.DFPSHCDS.* (G)
 ACCESS INTENT(UPDATE) ACCESS ALLOWED(NONE)
 IEF196I IEC161I 040(056,006,IGG0CLFT)-002,IEESYSAS,SMSVSAM,SYS00
 IEC161I 040(056,006,IGG0CLFT)-002,IEESYSAS,SMSVSAM,SYS00001,,,
 IEF196I IEC161I SYS1.DFPSHCDS.ACTIVE2.VSPLXPK
 IEC161I SYS1.DFPSHCDS.ACTIVE2.VSPLXPK
 .
 IEA794I SVC DUMP HAS CAPTURED: 760
 DUMPID=001 REQUESTED BY JOB (SMSVSAM)
 DUMP TITLE=COMPID=DF122,CSECT=IGWXSI20+0490,DATE=04/16/00,MAINT
 ID= NONE ,ABND=0F4,RC=00000024,RSN=67510404
 RSN67510404 67510404
 .
 *IGW611A SHARE CONTROL DATA SET NEVER ASSIGNED
 *IGW609A NO SPARE SHARE CONTROL DATA SETS EXIST. IMMEDIATE ACTIO
 REQUIRED
 --
 During Server initialization, insufficient access to SHCDS
 During initialization on a new system, a previously defined

 SHCDS might be deleted.
 With OW49746, we will fail the initialization process.
 IEF196I IEF237I 081F ALLOCATED TO SYS00002
 Appendix D. Information APARs 449

 IEF196I ICH408I JOB(IEESYSAS) STEP(SMSVSAM)
 IEF196I SYS1.MVSRES.MASTCAT CL(DATASET) VOL(USRPAK)
 IEF196I INSUFFICIENT ACCESS AUTHORITY
 IEF196I ACCESS INTENT(UPDATE) ACCESS ALLOWED(NONE)
 ICH408I JOB(IEESYSAS) STEP(SMSVSAM) 785
 SYS1.MVSRES.MASTCAT CL(DATASET) VOL(USRPAK)
 INSUFFICIENT ACCESS AUTHORITY
 ACCESS INTENT(UPDATE) ACCESS ALLOWED(NONE)
 IGW601E ADD SHARE CONTROL DATA SET FAILED, 790
 UNABLE TO ALLOCATE SYS1.DFPSHCDS.ACTIVE.VSPLXPK
 --
 During initialization on a new system, a previously defined
 SHCDS might be deleted.
 Instead, we will fail the initialization process.
 IGW619I ACTIVE SHARE CONTROL DATA SET 949
 SYS1.DFPSHCDS.ACTIVE2.VSPLXPK ADDED.
 IEF196I IEF237I 081F ALLOCATED TO SYS00002
 IGW619I ACTIVE SHARE CONTROL DATA SET 951
 SYS1.DFPSHCDS.ACTIVE.VSPLXPK ADDED.
 IGW601E ADD SHARE CONTROL DATA SET FAILED, 952
 UNABLE TO ALLOCATE SYS1.DFPSHCDS.SPARE.VXP0201
 IEF196I IEF237I 081F ALLOCATED TO SYS00003
 IGW619I SPARE SHARE CONTROL DATA SET 954
 SYS1.DFPSHCDS.SPARE.VSPLXPK ADDED.
 --
 During initialization on a new system, a SHCDS that is on an
 offline volume, will be deleted.
 14.33.02 SYSTEM1 *IGW615W SHARE CONTROL DATA SET
 SYS1.DFPSHCDS.ACTIVE4.VXP0302 HAS FAILED
 .
 PART 5: FALLBACK PROCEDURE
 .
 For some SHCDS errors, FALLBACK is the only way to correct the
 problem and to get the SMSVSAM to intialize successfully again.
 If you get repeated abends with the prefix '67' in the RSN code,
 then you know it's time to do a FALLBACK.
 .
 NOTE: *** IPL would NOT help because SHCDS is remembered from
 one IPL to another ***
 .
 FALLBACK procedure is documented in z/OS V1R3.0 DFSMSdfp Storage
 Administration Reference. In a nutshell, FALLBACK will reformat
 the SHCDS and hence clear all the errors.
 FALLBACK involves:
 - Terminate all servers in the plex using the command
 "VARY SMS,SMSVSAM,TERMINATESERVER"
 - Issue "VARY SMS,SMSVSAM,FALLBACK"
 - Reply to the WTOR that you are sure you want to do FALLBACK
 - Reactivate the server one at a time using -
450 VSAM Demystified

 "VARY SMS,SMSVSAM,ACTIVE"
 One the first system, you will be asked to specify 2 ACTIVE
 and 1 SPARE SHCDS.

 To add an active SHCDS: "VARY SMS,SHCDS(SHCDS_name),NEW"
 To add a spare SHCDS: "VARY SMS,SHCDS(SHCDS_name),NEWSPARE"
 .
 So far, we know the following errors would require FALLBACK:
 - Abend0F4 RC24 RSN675D0355
 - Abend0F4 RC24 RSN67260989
 - Abend0F4 RC24 RSN675F0398

 LOCAL FIX:

--

BDC000010564
Item BDC000010564
Source..........: PDDB0 PDDB0
Last updated....: 10/26/1998
Abstract........: VSAMRLS MIXED ENVIRONMENT

USERS: VRLs

PROBLEM SUMMARY:
 SMSVSAM address space hangs. Vary S active also hangs. Display of
server shows SHV PH2 Init step

SOLUTION:
 One of the systems was missing catalog entry for the SHCDS shared
control datasets.

PROBLEM DETAILS:
 TYPE: USER
 COMPID: 5695DF122
 RELEASE: 1D0

CUSTOMER:
We are using VSAM RLS across two systems. One is 5.2.2 (SMS 1.2) the
other was just upgraded from OS/390 1.3 (SMS 1.3) to OS/390 2.5 (SMS
1.4). We cannot get SMSVSAM to come available. I forced the SMSVSAM
 Appendix D. Information APARs 451

address space down on the 5.2.2 system to try to recover it, but this
did not help.

CUSTOMER:
We tried applying UW48355 to our 5.2.2 system to see if that would
help, to no avail.

IBM STATUS:
I left a voice message requesting that the pmr be updated with additi-
onal info.
1. Does the RLSINIT parm specify YES
2. What is being displayed from the D SMS,SMSVSAM,ALL
3. Has RLS ever been intialized before on these systems?
4. Were there any messages or Abends
5. How are the SHCDS defined (make sure there are 2 active and 1 spare)
6. Does Vary SMS,SMSVSAM,ACTIVE abend/message or hangs.........
 Please update the pmr with as much info as possible.

CUSTOMER:
As I stated earlier, these are NOT new systems, just that one was upg-
raded, so all the definitions are still there. The parmlib members
were copied over.

 D SMS,SMSVSAM,ALL

 IGW420I DISPLAY SMS,SMSVSAM 934

 DISPLAY SMS,SMSVSAM - SERVER STATUS

 SYSNAME: ESAJ UNAVAILABLE ASID: 000A STEP: SHC_Ph2_Init

 SYSNAME: SYSI UNAVAILABLE ASID: 000A STEP: SHC_Ph2_Init

 SYSNAME: ASID: STEP:

 SYSNAME: ASID: STEP:

 SYSNAME: ASID: STEP:

 SYSNAME: ASID: STEP:

 SYSNAME: ASID: STEP:

 SYSNAME: ASID: STEP:

 DISPLAY SMSVSAM - JOB STATUS

 SUBSYSTEMS CONNECTED: 0 BATCH: 0

452 VSAM Demystified

 DISPLAY SMSVSAM - LOCK TABLE STATUS (IGWLOCK00)

 CONNECT STATUS:

 SYSNAME: ESAJ RSN: 00000000 RbldNotActive

 SYSNAME: SYSI RSN: 00000000 RbldNotActive

 SYSNAME: RSN:

 SYSNAME: RSN:

 SYSNAME: RSN:

 SYSNAME: RSN:

 SYSNAME: RSN:

 SYSNAME: RSN:

This is what we get when we do a display. We receive no error message
on doing the V SMS,SMSVSAM,ACTIVE.

IBM STATUS:
From the status of each status it appears that the step phase is stuck
in SHC_PH2_Init which is dealing with the SHCDS (Share Control
Datasets).
1. How are the SHCDS defined (esp shareoptions)
2. Please issue D SMS,SHCDS and paste text in pmr.
3. Is this the first time that the server has been re-activated since
 it has been up on both systems?

CUSTOMER:
Yes, I believe that this has not worked since the upgrade. Here's the
output:

 D SMS,SMSVSAM,ALL

 IGW420I DISPLAY SMS,SMSVSAM 934

 DISPLAY SMS,SMSVSAM - SERVER STATUS

 SYSNAME: ESAJ UNAVAILABLE ASID: 000A STEP: SHC_Ph2_Init

 SYSNAME: SYSI UNAVAILABLE ASID: 000A STEP: SHC_Ph2_Init

 SYSNAME: ASID: STEP:

 SYSNAME: ASID: STEP:
 Appendix D. Information APARs 453

 SYSNAME: ASID: STEP:

 SYSNAME: ASID: STEP:

 SYSNAME: ASID: STEP:

 SYSNAME: ASID: STEP:

 DISPLAY SMSVSAM - JOB STATUS

 SUBSYSTEMS CONNECTED: 0 BATCH: 0

 DISPLAY SMSVSAM - LOCK TABLE STATUS (IGWLOCK00)

 CONNECT STATUS:

 SYSNAME: ESAJ RSN: 00000000 RbldNotActive

 SYSNAME: SYSI RSN: 00000000 RbldNotActive

 SYSNAME: RSN:

 SYSNAME: RSN:

 SYSNAME: RSN:

 SYSNAME: RSN:

 SYSNAME: RSN:

 SYSNAME: RSN:

CUSTOMER:
Sorry, I pasted the wrong stuff:

 D SMS,SHCDS
 IEE932I 692
 IGW612I 14:26:23 DISPLAY SMS,SHCDS
 Name Size %UTIL Status Type
 -----------------0Kb 0% N/A N/A
 -----------------0Kb 0% N/A N/A
 -----------------0Kb 0% N/A N/A
 -----------------0Kb 0% N/A N/A
 -----------------0Kb 0% N/A N/A
 -----------------0Kb 0% N/A N/A
 -----------------0Kb 0% N/A N/A
 -----------------0Kb 0% N/A N/A
 -----------------0Kb 0% N/A N/A
454 VSAM Demystified

IBM STATUS:
In the D SMS,SHCDS output it is not showing the names of your Share
control datasets. Did you erase them from the output or is this the
output pasted from the console? If so, it appears that there are no
SHCDS listed for this system. Can you see them from a listcat?

CUSTOMER:
Since one of the systems was not upgraded, are these defined in both
sides?

IBM STATUS:
There should be only 1 set of Share control datasets. It sounds as if
the XCF strucutre was deleted and redefined. This is one of the ways
that the names of the SHCDS files are dropped. Also I noticed in your
first update that you have an DFSMS R120 MVS 5.2.2 system. Maybe this
was a typo, but RLS cannot be activated on a DFSMS R1B0 system.

CUSTOMER:
That DFSMS is R130 on MVS 5.2.2.

CUSTOMER:
We recataloged the datasets. Tried 'cycling' SMSVSAM to no avail.
IPLd both systems last night. The user tried one immediately and all
is well, the other I'm still waiting on an answer. So looks as though
the datasets got uncataloged on the conversion. Of course no one
knows how. Is there a way to decipher what the error codes mean so
that the next time something like this happens we can find it easier?

IBM STATUS:
The reason codes are not documented but a clue is when the steps of
the D SMS,SMSVSAM,ALL show SHC_PH2_INIT or anything with SHC means
that the share control datasets were not recognized.

CUSTOMER:
I displayed the shcds's and show three (3) active shcds's. When I do
the display on smsvsam,all, i show one active and one unavailable sys-
tem. The unavailable system is in the shc_ph2_init state. I varied
SMSVSAM active (v sms,smsvsam,active) and the status did not change,
i.e. one available and one unavailable. My commands were issued on
the unavailable system. Do you have any further suggestions on getting
it to activate? I noticed Monday am following IPL's of both systems
over the weekend that both showed active, but somehow one of the sys-
tems evidently fell out. The SHCDS datasets are all cataloged on that
system and add successfully when added via command.

IBM STATUS:
Can you paste the output from D SMS,SHCDS issued on the unavailable
system in the PMR?
 Appendix D. Information APARs 455

CUSTOMER:
 98244 10:52:23.16 CSTMXE4 00000290 D SMS,SHCDS
98244 10:52:23.22 01000090 IEE932I 264
 264 00000090 IGW612I 10:52:23 DISPLAY
SMS,SHCDS
 264 00000090 Name Size %UTIL
Status Type
 264 00000090 ACTIVE.VAFXBDD 2880Kb 8% GOOD
 ACTIVE
 264 00000090 -----------------0Kb 0% N/A
 N/A
 264 00000090 -----------------0Kb 0% N/A
 N/A
 264 00000090 -----------------0Kb 0% N/A
 N/A
 264 00000090 -----------------0Kb 0% N/A
 N/A
 264 00000090 -----------------0Kb 0% N/A
 N/A
 264 00000090 -----------------0Kb 0% N/A
 N/A
 264 00000090 -----------------0Kb 0% N/A
 N/A
 264 00000090 -----------------0Kb 0% N/A
 N/A
 264 00000090 -----------------0Kb 0% N/A
 N/A D SMS,SMSVSAM,ALL
98244 10:57:08.14 STC01761 00000090 SQAMON - SQA SIZE - 6756K; SPILL=
 5140K
98244 10:57:08.95 01000290 IXL014I IXLCONN REQUEST FOR
STRUCTURE IGWLO
 503 00000090 JOBNAME: SMSVSAM ASID: 000A
CONNECTOR NAME:
 503 00000090 CFNAME: CFPART01
98244 10:57:08.95 01000290 IXL030I CONNECTOR STATISTICS FOR
LOCK STRUC
 504 00000090 CONNECTOR SYSI:
 504 00000090 000200F6
 504 00000090 00000000 00000000 00000000
00000000
 504 00000090 00000000 00000000 00000000
00000000
 504 00000090 00000000 00000000 00000000
00000000
 504 00000090 00000001 00000000 00000000
00000000
 504 00000090 00000000 00000000 00000000
00000000
456 VSAM Demystified

 504 00000090 00000000 00000000 00000000
00000000
 504 00000090 00000002 00000000 00000000
00000000
 504 00000090 00000000 00000000 00000000
00000000
 504 00000090 00000000 00000000 00000000
00000000
98244 10:57:08.95 01000290 IXL031I CONNECTOR CLEANUP FOR LOCK
STRUCTUR
 505 00000090 CONNECTOR SYSI, HAS COMPLETED. D
SMS,SMSVSAM,ALL
98244 10:57:08.14 STC01761 00000090 SQAMON - SQA SIZE - 6756K; SPILL=
 5140K
98244 10:57:08.95 01000290 IXL014I IXLCONN REQUEST FOR
STRUCTURE IGWLO
 503 00000090 JOBNAME: SMSVSAM ASID: 000A
CONNECTOR NAME:
 503 00000090 CFNAME: CFPART01
98244 10:57:08.95 01000290 IXL030I CONNECTOR STATISTICS FOR
LOCK STRUC
 504 00000090 CONNECTOR SYSI:
 504 00000090 000200F6
 504 00000090 00000000 00000000 00000000
00000000
 504 00000090 00000000 00000000 00000000
00000000
 504 00000090 00000000 00000000 00000000
00000000
 504 00000090 00000001 00000000 00000000
00000000
 504 00000090 00000000 00000000 00000000
00000000
 504 00000090 00000000 00000000 00000000
00000000
 504 00000090 00000002 00000000 00000000
00000000
 504 00000090 00000000 00000000 00000000
00000000
 504 00000090 00000000 00000000 00000000
00000000
98244 10:57:08.95 01000290 IXL031I CONNECTOR CLEANUP FOR LOCK
STRUCTUR
 505 00000090 CONNECTOR SYSI, HAS COMPLETED.
00200F6 00000000 00000000 00000000 00000000 00000000
0090 IGW420I DISPLAY SMS,SMSVSAM 506
0090 DISPLAY SMS,SMSVSAM - SERVER STATUS
0090 SYSNAME: ESAJ AVAILABLE ASID: 000A STEP:
SmsVsamInitComplete
 Appendix D. Information APARs 457

0090 SYSNAME: SYSI UNAVAILABLE ASID: 000A STEP: SHC_Ph2_Init
0090 SYSNAME: ASID: STEP:
....................
0090 SYSNAME: ASID: STEP:
....................
0090 SYSNAME: ASID: STEP:
....................
0090 SYSNAME: ASID: STEP:
....................
0090 SYSNAME: ASID: STEP:
....................
0090 SYSNAME: ASID: STEP:
....................
0090
0090 DISPLAY SMSVSAM - JOB STATUS
0090 SUBSYSTEMS CONNECTED: 0 BATCH: 1
0090
0090 DISPLAY SMSVSAM - LOCK TABLE STATUS (IGWLOCK00)
0090 CONNECT STATUS:
0090 SYSNAME: ESAJ ACTIVE RSN: 02010407
RbldNotActive
0090 SYSNAME: SYSI RSN: 00000000
RbldNotActive

When SYSI fails to connect, like this display, it's always in the
SHC_PH2_INIT status. Attempting to v sms,smsvsam,active has no positve
results. If an IPL takes place, it will normally sync up. One other
note: At IPL when it doesn't sync up, we get the message that the
SHCDS is not duplexed; immediate action is required. Adding another
or tow SHCDS's does not change the status, i.e. it does not activate.

IBM STATUS:
It appears from the output from the D SMS,SHCDS display that only 1
SHCDS exist. Now this is strange when there should be at least 3
share control datasets(2 active and 1 spare). As for system SYSI it
appears to be stuck in share control phase init which means that the
Share control datasets are not being recognized to that system.

Do both systems diplay the same ouput for the D SMS,SHCDS? If not,
please update etr with output for both systems. Are there 3 SHCDS de-
fined?

CUSTOMER:
IBM:
 Getting back to problem.
Today I issued some SMS display commands and one of the two systems
showed available and one showed unavailable. I display the SHCDS's
and only one showed active. I added a second (duplex) and then a
third (spare) which then caused smsvsam to activate and now shows to
458 VSAM Demystified

be available on both systems. I have a user currently testing and
should have results fairly soon. How does SMS acquire the SHCDS data-
sets? Since the name is SYS1.DFPSHCDS, does it look for those names?
Once I activate the SHCDS's, do I need to activate them each time
SMSVSAM is stopped (i.e. IPL)?

IBM UPDATE:
The short answers to your question is-
Yes,SMS does look for the data set names.
No,you do not need to activate the Share Control Data Sets every time
a SMSVSAM is stopped.

After talking to Renee it seems that something keeps taking your SC
data sets out of commission and that you're trying to pinpoint why-
true?

IBM STATUS:
One of the systems was missing Catalog entry for shared D/S.

BDC000007033
Item BDC000007033
Source..........: PDDB0 PDDB0
Last updated....: 02/26/1998
Abstract........: SMSVSAM address space does not complete initialization

USERS: VRLS

PROBLEM SUMMARY:
Delete / Moved SHCDS share control ds SMSVSAM would not initialize

SOLUTION:
Applied uw42626 and issued FALLBACKSMSVSAMYES

PROBLEM DETAILS:
 TYPE: N/A
 COMPID: 5695DF122
 RELEASE: 1C0

CUSTOMER:
Running OS390 R3 at 9710 put level. Any attempt to bring up
the SMSVSAM address space and it never seems to complete initializa-
tion. Display it you get the following:
DISPLAY SMS,SMSVSAM - SERVER STATUS
 SYSNAME: TLP1 UNAVAILABLE ASID: 000A STEP: SHC_Ph2_Init
 SYSNAME: ASID: STEP:

 Appendix D. Information APARs 459

DISPLAY SMSVSAM - JOB STATUS
 SUBSYSTEMS CONNECTED: 0 BATCH: 0

DISPLAY SMSVSAM - LOCK TABLE STATUS (IGWLOCK00)
 CONNECT STATUS:
 SYSNAME: TLP1 RSN: 00000000 RbldNotActive
 SYSNAME: RSN:
Here are the SMS parms.

IGD031I SMS PARAMETERS 483
ACDS = SCS5.DFSMS.ACDS
COMMDS = SCS5.DFSMS.COMMDS
INTERVAL = 15 DINTERVAL = 150
BMFTIME = 3600 CACHETIME = 3600
SMF_TIME = YES CF_TIME = 3600
LOCAL_DEADLOCK = 30 GLOBAL_DEADLOCK = 10
REVERIFY = NO ACSDEFAULTS = NO
DSNTYPE = PDS USE_RESOWNER = YES
PDSESHARING = NORMAL
OVRD_EXPDT = NO RLS_MAX_POOL_SIZE = 50MB
SYSTEMS = 8 RLSINIT = YES
HSP_SIZE = 256MB
TRACE = OFF SIZE = 128K TYPE = ERROR
 JOBNAME = * ASID = *
 TRACING EVENTS:
 MODULE = ON SMSSJF = ON SMSSSI = ON ACSINT = ON
 OPCMD = ON CONFC = ON CDSC = ON CONFS = ON
 MSG = ON ERR = ON CONFR = ON CONFA = ON
 ACSPRO = ON IDAX = ON DISP = ON CATG = ON
 VOLREF = ON SCHEDP = ON SCHEDS = ON VTOCL = ON
 VTOCD = ON VTOCR = ON VTOCC = ON VTOCA = ON
 RCD = ON DCF = ON DPN = ON TVR = ON
 DSTACK = ON

Used the command: V SMS,SMSVSAM,ACTIVE

IBM STATUS:
When the Vary SMS,SMSVSAM,ACTIVE command is issued what are the messages
received? Issue a Display SMS,SHCDS this will
tell if any Share control datasets were defined and what is the sta-
tus. Are there 2 primary and 1 spare SHCDS?

CUSTOMER:
System was IPLed this morning and the SMSVSAM address space is up
and is getting CPU time. No messages seen.
A D SMS,SHCDS and it never comes back. Looking through the console
log at ipl time it does show the share datasets:
IEF196I IEF237I 09BB ALLOCATED TO SYS00001
IGW619I ACTIVE SHARE CONTROL DATA SET 162
460 VSAM Demystified

SYS1.DFPSHCDS.PRIMARY.VSYSP16 ADDED.
IEF196I IEF237I 09BC ALLOCATED TO SYS00002
IGW619I ACTIVE SHARE CONTROL DATA SET 164
SYS1.DFPSHCDS.SECONDRY.VSYSP17 ADDED.
IEF196I IEF237I 09BD ALLOCATED TO SYS00003
IGW619I ACTIVE SHARE CONTROL DATA SET 166
SYS1.DFPSHCDS.SPARE.VSYSP18 ADDED.

A V SMS,SMSVSAM,ACTIVE and nothing comes back.
A D SMS,SMSVSAM,ALL and no messages or displays are shown .

CUSTOMER:
Just to give you a little more background. Previously the SMSVSAM
address space use to come up and get Abend0e0, but would never fully
initialize. However we always could do various displays with no prob-
lem. This changed to our current problem after we deleted our coup-
ling facility datasets and reallocated them. We changed the MAXSYSTEM
parm from 8 to 4, that's why we did it. This morning we wanted to
changeour share datasets because we want to move them. I turned
RLSINIT to NO abd then did FORCE SMSVSAM,ARM to shutdown theSMSVSAM
address space and this all worked. I turned RLSINIT to YES and then
did V SMS, SMSVSAM, ACTIVE. SMSVSAM took the abend0e0:
SYSTEM COMPLETION CODE=0E0 REASON CODE=00000030
 TIME=09.29.25 SEQ=00135 CPU=0041 ASID=0020
 PSW AT TIME OF ERROR 075C1000 81E76252 ILC 4 INTC 30
 NO ACTIVE MODULE FOUND
 NAME=UNKNOWN
 DATA AT PSW 01E7624C - 47F0F006 063AB240 00E05180
 GPR 0-3 00000200 7F148470 FF147028 7F147028
 GPR 4-7 FF147028 00000000 00000050 007DE920
 GPR 8-11 81E7625C 00000050 7F148420 01EA079F
 GPR 12-15 20000000 00000000 81E768C8 01E7624C
 END OF SYMPTOM DUMP
It took 2 of these abends. The SMSVSAM address space shows up and
getting CPU time. We do not see any other messages. I then try to
add one of the new share datasets: V SMS,SHCDS(PRIMARY.VSCSPX1),NEW.
Nothing comes back and no matter what displays I put in they don't
come back. This is where we stand.

IBM STATUS:
From the indication of your messages It is because you do not have a
SPARE Share control dataset recognized. The msgs following would in-
dicate that a SPARE exist;
IGW619I ACTIVE SHARE CONTROL DATA SET 060
===========>SYS1.DFPSHCDS.prime.V603RES ADDED.
IEF196I IEF237I 023D ALLOCATED TO SYS00002
IGW619I ACTIVE SHARE CONTROL DATA SET 062
===========>SYS1.DFPSHCDS.SECON.V603LIB ADDED.
IEF196I IEF237I 0230 ALLOCATED TO SYS00003
 Appendix D. Information APARs 461

******>IGW619I SPARE SHARE CONTROL DATA SET 064
===========>SYS1.DFPSHCDS.SPARE.V603RES ADDED.
It will indicate SPARE. The messages in your previous update display
ACTIVE. So what needs to be done is that one of the SHCDS needs to be
deactivated and reactivated as a SPARE with the Vary command using the
Newspare keyword...

CUSTOMER:
When we shutdown SMSVSAM this morning and then came back and got the
Abend0E0, here are the messages received:
IGW619I ACTIVE SHARE CONTROL DATA SET 734
SYS1.DFPSHCDS.PRIMARY.VSYSP16 ADDED.
IEF196I IEF237I 09BC ALLOCATED TO SYS00002
IGW619I ACTIVE SHARE CONTROL DATA SET 736
SYS1.DFPSHCDS.SECONDRY.VSYSP17 ADDED.
IEF196I IEF237I 09BD ALLOCATED TO SYS00003
IGW619I SPARE SHARE CONTROL DATA SET 738
SYS1.DFPSHCDS.SPARE.VSYSP18 ADDED.
IEF196I IEA995I SYMPTOM DUMP OUTPUT
IEF196I SYSTEM COMPLETION CODE=0E0 REASON CODE=00000030
So the system does recognize the spare and looking back at ipl time it
also shows the SPARE message, my cut and paste probably is bad.

IBM UPDATE:
I discussed this problem with my developer and he can see from your
update a couple of things.
1. Need to make sure that the PTFs UW42626 and UW39292 are both app-
 lied.
2. Also the way that the SHCDS were moved was incorrect. Due to the
 info that is kept in the SHCDS and on the system, SMSVSAM will
 look for those same SHCDS. The proper way would be to add in the
 new dataset and spares (using Vary command) and then delete the
 old ones(using Vary Command). Do all of this while the SMSVSAM
 server is active.
Please verify that these PTFs are applied.

CUSTOMER:
PTFs, UW42626 and UW39292 are on. We have used the VARY command for
the SHCDSes. We have just ipled our system with RLSINIT(YES), so
SMSVSAM was active. I did a D SMS,SHCDS and the display never came
back. I then reset RLSINIT(NO) and did a FORCE SMSVSAM,ARM and this
shutdown the address space. I then did a VARY SMS,SMSVSAM,FALLBACK
and replied to the message FALLBACKSMSVSAMYES. I then received the
following:

 IGW524I SMSVSAM FALLBACK PROCESSING IS NOW COMPLETE
 IEF196I IGW523A SMSVSAM ADDRESS SPACE FALLBACK IS REQUESTED. REPLY
 IEF196I 'CANCEL' TO ABORT, 'FALLBACKSMSVSAMYES' TO PROCEED.
*19 IGW523A SMSVSAM ADDRESS SPACE FALLBACK IS REQUESTED. REPLY 'CANCEL'
462 VSAM Demystified

 TO ABORT, 'FALLBACKSMSVSAMYES' TO PROCEED.

I replied FALLBACKSMSVSAMYES and received the message:
IGW524I SMSVSAM FALLBACK PROCESSING IS NOW COMPLETE

I set SMS to RLSINIT(YES) and that is where we sit. I'm waiting for
the person in charge of this project to come in to run some commands
and we are probably going to try to vary the new SHCDS datasets on.
Before we do anything, is there something you want me to do?

CUSTOMER:
We did V SMS,SMSVSAM,ACTIVE and received:
IGW415I SMSVSAM SERVER ADDRESS SPACE HAS FAILED AND IS RESTARTING
Next we did:
D SMS,SHCDS
IEE932I 708
IGW612I 12:54:16 DISPLAY SMS,SHCDS
Name Size %UTIL Status Type
-----------------0Kb 0% N/A N/A
-----------------0Kb 0% N/A N/A
-----------------0Kb 0% N/A N/A
-----------------0Kb 0% N/A N/A
Then we varied the SHCDS:
V SMS,SHCDS(PRIMARY.VSCSPX1),NEW
IGW619I ACTIVE SHARE CONTROL DATA SET 798
SYS1.DFPSHCDS.PRIMARY.VSCSPX1 ADDED.
V SMS,SHCDS(SECONDRY.VSCSPX2),NEW
IGW619I ACTIVE SHARE CONTROL DATA SET 838
SYS1.DFPSHCDS.SECONDRY.VSCSPX2 ADDED.
V SMS,SHCDS(SPARE.VSCSPX3),NEWSPARE
IGW619I SPARE SHARE CONTROL DATA SET 863
SYS1.DFPSHCDS.SPARE.VSCSPX3 ADDED.
IXL014I IXLCONN REQUEST FOR STRUCTURE IGWLOCK00 WAS SUCCESSFUL. 865
JOBNAME: SMSVSAM ASID: 00BE CONNECTOR NAME: TLP1
CFNAME: SCSCF1
IXL015I STRUCTURE ALLOCATION INFORMATION FOR 866
STRUCTURE IGWLOCK00, CONNECTOR NAME TLP1
 CFNAME ALLOCATION STATUS/FAILURE REASON
 -------- ---------------------------------
 SCSCF1 STRUCTURE ALLOCATED
IGW453I SMSVSAM ADDRESS SPACE HAS SUCCESSFULLY 867
CONNECTED TO DFSMS LOCK STRUCTURE IGWLOCK00
STRUCTURE VERSION:AFD504C2A838AA03 SIZE:20224K bytes
MAXIMUM USERS:4 REQUESTED:4
LOCK TABLE ENTRIES:4194304 REQUESTED:4194304
RECORD TABLE ENTRIES:83481 USED:0
IGW321I No retained locks
IGW321I No Spheres in Lost Locks
IGW414I SMSVSAM SERVER ADDRESS SPACE IS NOW ACTIVE.
 Appendix D. Information APARs 463

IGW467I DFSMS RLS_MAX_POOL_SIZE PARMLIB VALUE SET DURING 877
SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: TLP1
CURRENT VALUE: 40 1
IGW467I DFSMS DEADLOCK_DETECTION PARMLIB VALUE SET DURING 878
SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: TLP1
THIS SYSTEM IS OPERATING AS A LOCAL DEADLOCK PROCESSOR.
CURRENT VALUE: 30 10 1
IGW467I DFSMS SMF_TIME PARMLIB VALUE SET DURING 879
SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: TLP1
CURRENT VALUE: YES 1
IGW467I DFSMS CF_TIME PARMLIB VALUE SET DURING 880
SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: TLP1
CURRENT VALUE: 3600 1

Then we did a D SMS,SHCDS
IGW612I 12:57:32 DISPLAY SMS,SHCDS
Name Size %UTIL Status Type
PRIMARY.VSCSPX1 10800Kb 2% GOOD ACTIVE
SECONDRY.VSCSPX2 10800Kb 2% GOOD ACTIVE
SPARE.VSCSPX3 10800Kb 2% GOOD SPARE
-----------------0Kb 0% N/A N/A

D SMS,SMSVSAM,ALL
IGW420I DISPLAY SMS,SMSVSAM 915
DISPLAY SMS,SMSVSAM - SERVER STATUS
 SYSNAME: TLP1 AVAILABLE ASID: 00BE STEP: SmsVsamInitComplete
 SYSNAME: ASID: STEP:
 SYSNAME: ASID: STEP:

DISPLAY SMSVSAM - JOB STATUS
 SUBSYSTEMS CONNECTED: 0 BATCH: 1

DISPLAY SMSVSAM - LOCK TABLE STATUS (IGWLOCK00)
 CONNECT STATUS:
 SYSNAME: TLP1 ACTIVE RSN: 00000000 RbldNotActive
 SYSNAME: RSN:
 SYSNAME: RSN:
We did other displays and they all come back. These new SHCDS data-
sets were allocated on the same system that we brought up SMSVSAM on.
This system is an OS390 R3 put level 9710 system. Before the data-
sets were allocated on another system in the SYSPLEX. This system is
an OS390 R2 put level 9605+ system. The SHCDS datasets were then re-
cataloged to the system that SMSVSAM was started on. These 2 systems
do not share a master catalog, but they share DASD. What solved this
problem this time around?

IBM STATUS:
The Fallback is kind of like a reset for SMSVSAM. All of the infolike
name of SHCDS and lock structure status is all deleted. SO when this
464 VSAM Demystified

completes SMSVSAM can be activated and will retrieve all new info.
Understand that this is to be used as a last resort, because a lot of
pertinent info is deleted like the lock structure data. It appears
from the displays and the messages that eveything is working.

CUSTOMER:
We seem to have every working. When I brought up out other system in
OS390 R3 and had the SHCDS datasets cataloged everything seemed to
work fine.

II12603
Item II12603
 APAR Identifier II12603 Last Changed 02/07/21
 VSAM RECORD-LEVEL SHARING, RLS SMSVSAM INITIALIZATION AND
 RECOVERY CONSIDERATIONS

 Symptom IN INCORROUT Status INTRAN
 Severity 3 Date Closed
 Component INFOV2LIB Duplicate of
 Reported Release 001 Fixed Release
 Component Name V2 LIB INFO ITE Special Notice
 Current Target Date .. Flags
 SCP
 Platform

 Status Detail: Not Available

 PE PTF List:

 PTF List:

 Parent APAR:
 Child APAR list:

 ERROR DESCRIPTION:
 When planning to implement vsam record-level sharing, rls, or
 when planning a smsvsam recovery strategy please carefully
 review the following documentation.
 (SC264920) 'OS390 DFSMSDFP Storage Administration Reference'
 Chapter 14: Administering Vsam Record-Level Sharing
 (SG242073) 'Getting the Most Out of a Parallel Sysplex'
 Section 6.3.4: Batch With CICS and Vsam-RLS
 Section 7.3.1: CICS and Vsam-RLS Considerations
 (Sy277611) 'OS390 DFSMSDFP Diagnosis Reference'
 Appendix D. Information APARs 465

 Section 20.5: Vsam RLS Diagnostic Aids
 (GA227286) 'Parallel Sysplex Recovery'
 Section 2.8: Recovering From a Vsam Rls Address Space
 Failure
 (SC264919) 'DFSMS/MVS Planning for Installation'
 Chapter 6: Vsam Record Level Sharing
 (GC331681) 'Installation Guide'
 Chapter 18: Preparing for Vsam-RLS
 (sc267344) 'OS390 DFSMS Introduction'
 Chapter 4: Using Vsam Record-Level Sharing

 LOCAL FIX:

 INITIALIZATION
 The smsvsam server address space may be set to initialize
 during ipl or can be activated by means of the
 'V SMS,SMSVSAM,ACTIVE' command.
 The documentation above outlines what must be setup before
 smsvsam can initialize. If the address space fails to come up
 successfully, use the following display commands to ascertain
 the nature of the initialization problem.
 'D SMS,SMSVSAM,ALL' To display smsvsam status within the
 sysplex.
 'D SMS,SHCDS' To display the status of the shcds files.
 'D XCF' To display coupling facility status information.
 .
 RECOVERY AND DIAGNOSIS
 If the SMSVSAM server abnormally terminates a svcdump will be
 written to the SYS1.DUMP dataset and the server should
 automatically restart. If the server does not restart, use
 'V SMS,SMSVSAM,ACTIVE' to force the server to reinitialise.
 The dump should be used to analyze and resolve the abnormal
 termination condition.
 It may become apparent that there is a non-terminating problem
 with the SMSVSAM server. 'Display GRS' command may display
 resource contention involving SMSVSAM. Workload directed to the
 SMSVSAM server may not be completing causing slow downs or work
 stoppage in jobs utilizing RLS.
 When such a hang condition is detected, it is essential to
 obtain dumps from every system in the sysplex on which SMSVXAM
 is active. These dumps are required by IBM to analyze product
 defects leading to the hang condition.
 The following example slip can be set disabled and enabled when
 a hang condition arises requiring dumps to SMSVSAM. When this
 slip matches all systems in the sysplex will produce SVCDumps.
 SLIP SET,IF,A=SVCD,N=(IEAVEDS0,0000,7FFF),
 JOBLIST=(GRS,CATALOG,SMSVSAM),
 DSPNAME('GRS'.*,'CATALOG'.*,'SMSVSAM'.*),
466 VSAM Demystified

 SDATA=(PSA,SQA,CSA,LPA,TRT,SUM,LSQA,RGN,GRSQ,NUC,XESDATA),
 REMOTE=(JOBLIST,DSPNAME,SDATA),END.
 As each system in the sysplex will produce a SVCDump
 you must ensure the availability of adaquately large sys1.dump
 data sets on all systems.
 Once the dumps have been taken it may be necessary to terminate
 the smsvsam server by use of the 'V SMS,SMSVSAM,TERMINATESERVER'
 command. Attempt to identify the system most likely to be the
 root of the hang condition and terminate it first. It may be
 necessary to terminate additional or even all servers before the
 hang is resolved. Each terminated server should automatically
 restart or may be activated by means of the 'V
 SMS,SMSVSAM,ACTIVE' command. It may be necessary to terminate
 additional or all servers before a terminated server can
 successfully restart. You may make use of information returned
 from the 'D SMS,SMSVSAM' commands to anallyze initialization
 problems.
 If the system does not respond to the terminateserver command,

 issue 'FORCE SMSVSAM,ARM' to force the address space down.
 SMSvsam should be restarted as if terminateserver had been
 successful. A re-ipl should be necessary in only the most severe
 situations and attempted only as a last resort.

II12243
Item II12243
 APAR Identifier II12243 Last Changed 00/08/10
 MISC ABEND0F4 IN SMSVSAM FOLLOWING 'V XCF,'SYSNAME''
 VSAMRLS INFOAPAR

 Symptom AB ABEND0F4 Status INTRAN
 Severity 4 Date Closed
 Component INFOV2LIB Duplicate of
 Reported Release 001 Fixed Release
 Component Name V2 LIB INFO ITE Special Notice
 Current Target Date .. Flags
 SCP
 Platform

 Status Detail: Not Available

 PE PTF List:

 PTF List:

 Appendix D. Information APARs 467

 Parent APAR:
 Child APAR list:

 ERROR DESCRIPTION:
 The command 'v sms,smsvsam,terminateserver' must be issued to
 terminate the smsvsam address space prior to partitioning a
 system from the sysplex. If a 'v xcf,'sysname'' is issued while
 the smsvsam address space is active miscelaneous abend0f4s can
 result. Examples of these abends include:
 abend0f4 rc24, rc00000024, rsn62020071 rc62020071 idavstai
 abend0f4 rc14, rc00000014 rsn00001122 rc00001122 idavqini
 Additional keywords:
 msgigw416i

BDC000022923
Item BDC000022923
Source..........: PDDB0 PDDB0
Last updated....: 04/29/2002
Abstract........: SMSVSAM address looping during connect to IGWLOCK00

USERS: ALL DFSMS SMSVSAM users

PROBLEM SUMMARY:Loop issuing the following messages:
msgixc579i pending deallocation for structure IGWLOCK00
msgigw469i no suitable coupling facility
msgixl013i IXLCONN failed rc0c rsn02010c08.
These messages flood the console

SOLUTION: User specified incorrect structure size
PROBLEM DETAILS:
 TYPE:
 COMPID: 5695DF122
 RELEASE: 1F0

Customer :
Hi Brought up SMSVSAM for the 1st time on Friday. After issuing the
V SMS,SMSVSAM,Active command, SMSVSAM loops trying to connect to the
IGWLOCK00 structure. There was not enough space in the CF to define
the IGWLOCK00 structure.

I have FTPed dump and SYSLOG..

IBM DFP:
Hello
468 VSAM Demystified

The dump does not contain all that much of the storage for the address
space. I see we issue the following messages over and over from about
12:15 to 12:55 when you forced SMSVSAM address space.
msgixc579i pending deallocation for structure IGWLOCK00
msgigw469i no suitable coupling facility
msgixl013i IXLCONN failed rc0c rsn02010c08.
The trace table is insufficient to determine where the loop lies also.
The WTO appears to be issued from 5e25bc0. This is also not in the
dump nor is the parameter list so I cannot confirm this is where the
problem is. I can tell you this address is in IGDZILLA+x'34bco' . If
you could get an AMBLIST of IGDZILLA and send it I can then check to
what module we are in and see if that will help.
Is this recreatable?
If so, I can put together some information to capture better doc.

Customer
Hi AMBLIST sent
I believe we can recreate .

IBM DFP:

received the amblist. Module is IGDMCSI2 +x'f0' which is the module
that issues all IGW messages. Not too helpful. I will check the code
around the SVC 35 to see where we were at that time. Will update later.
Customer:
HI Is there any other info you need. ? I away on holidays until
next year. In the meantime the DFHSM folks would like to continue with
TESTING..

IBM DFP:
Hello
I am still working on this with the MVS folks. I will update when I
have more information. Who in the HSM group will be working on this
just in case I need to contact them?
IBM:
thanks for the update. we are still trying to figure this out and
hopefully will have something for you today.

IBM DFP:
Hello VSAM
I am not sure if you guys are the right people for this or if there is
another queue for SMSVSAM stuff. Please forward to the correct queue if
it is not you guys.
Please take a look at my update on page 4 of the pmr. SMSVSAM could not
connect to IGWLOCK00 because the CF structure was full. However we
continued looping trying to connect. I am sending the syslog to you
via FTP per II03855. This should be easy enough to recreate I suspect.
 Appendix D. Information APARs 469

If there is anything further that you require let me know.

Requeueing to the RLS queue for diagnosis.

VSAM L2:
Hi
 By design, SMSVSAM will continue attempting to connect to the lock
structure. If there is no room in the coupling facility, room needs to
be made, or the CFRM needs to be changed.

IBM DFP:
Hello
This is totally unreasonable. How are the operators supposed to take
any action when SMSVSAM is looping trying to connect to the CF? This
is like saying you shouldn't do anything when you get an X37 abend, just
keep trying eventually the PUT will work? This is ludicrous. IF there
is no space in the CF then fail the request and allow the operators
time to correct it and try again.
Please adddress this as a defect in the code.
Thanks,
action plan: sending to VSAM RLS level 2.
Vsam L2
 Development looked through the code involved. It is not in a loop.
If SMSVSAM cannot connect to the lock structure during initialization
it will go into a wait after issuing the IGW469i. It is notified every
time a change is made to the CF and will attempt to re-allocate the
lock structure. If unsuccessful, it will issue the message and go into
a wait again. It is our opinion that changing the design to terminate
is not in the best interest for all customers.
 Regards,

IBM DFP:
I took another look at the dump and do see that we are waiting and then
being woken up every once in awhile. I have asked MVS to take a look
at the trace to see if she can figure out what XCF is changing that is
causing SMSVSAM to wake up and try the connect again.

IBM MVS:
To C/T:
 The customer got the following sequence of messages after issuing
a V SMS,SMSVSAM,Active command:
IXC579I PENDING DEALLOCATION FOR STRUCTURE IGWLOCK00 IN
 COUPLING FACILITY 009672.IBM.02.000000049747
 PARTITION: 2 CPCID: 00
HAS BEEN COMPLETED.
PHYSICAL STRUCTURE VERSION: B6D0D708 14576381
INFO116: 13060020 01 6A00 0000000B
470 VSAM Demystified

TRACE THREAD: 00000DE0.
IXC579I PENDING DEALLOCATION FOR STRUCTURE IGWLOCK00 IN
 COUPLING FACILITY 009672.IBM.02.000000049748
 PARTITION: 2 CPCID: 00
HAS BEEN COMPLETED.
PHYSICAL STRUCTURE VERSION: B6D0D70A A2CCF662
INFO116: 13060020 01 6A00 00000003
TRACE THREAD: 00000DE0.
IGW469I NO SUITABLE COUPLING FACILITY, 779
NUMSYSTEMS:11 STRUCTURESIZE:500000 LOCKENTRIES:34217728
IXL013I IXLCONN REQUEST FOR STRUCTURE IGWLOCK00 FAILED.
JOBNAME: SMSVSAM ASID: 006D CONNECTOR NAME: K300
IXLCONN RETURN CODE: 0000000C, REASON CODE: 02010C08
IXL015I STRUCTURE ALLOCATION INFORMATION FOR
STRUCTURE IGWLOCK00, CONNECTOR NAME K300
 CFNAME ALLOCATION STATUS/FAILURE REASON
 -------- ---------------------------------
 CF6L2 INSUFFICIENT SPACE
 CF5L2 INSUFFICIENT SPACE
These messages were repeated over and over again appearing to be in
a loop so the customer took a dump of the situation. From the dump
(and with assistance from the VSAM c/t) we have determined that
IGWLNI01 repeatedly issues the IXLCONN to connect to IGWLOCK00.
IGWLNI01 checks the return code from the IXLCONN and since it is
non zero it issues IGW469I and then waits on an ECB that is posted
by their ENF35 exit. I have looked at their ENF35 exit (IGWSSEN2)
and it simply causes the ECB to be posted when it is given control.
It appears that the ENF35 exit is being driven frequently. This is
why they continually keep trying to issue the IXLCONN. I have
reviewed all the reasons why the ENF35 exit is given control and
I cannot determine from the dump exactly why the exit is being
driven so frequently. I wasn't sure why the IXC579I messages were
being issued everytime we did the IXLCONN but INFO116 indicates
that module IXCl2ASR is the module that is driving IXCXRHT so
I think these messages are probably normal. I cannot see why
these would trigger the ENF35...
 Also - in the SYSXES GLOBAL component trace just prior to
the IXCASR COMPLETE entry - I see several HWLAYER entries for
ENTRY TO IXLERREC but I cannot tie these into the ENF35 signal.
 Any ideas?? Thanks

MVS C/T:
Hi
 You can send us the dump if you like.

IBM DFP:
Hello
I have ftp'd the tersed dump and syslog to you. Let me know if you need
anything further.
 Appendix D. Information APARs 471

Thanks

MVS C/T:
 Reveiwing doc.
 Can we find out who is at LMOD IXCI2PVT+027A78?
Thanks

IBM MVS:
Hi we are trying to solve this mystery but we need an AMBLIST
of IXCI2PVT that matches the dump that was taken on K300 on Nov. 30th
at 12:52:42. I know we are a little late in asking but if you haven't
down any maintenance to XCF load libraries on that system since
Nov. 30th then we should be ok. You can send it to me

IBM C/T:

 Trying to determine what would cause the apparent repeated ENF35,
though as MVS and I discussed, we cannot see any remnants of them
(ie. no storage containig the ENF plist) in the dump.
 At this point I suspect that the deallocation seen in the MSGIXC579I
is relevant. L2ASR does an IXCXRHT, and I think IXCL2RHT is doing an
IXCXLSIG(NEWRESOURCEAVAIL) which will result in an ENF35. What is not
clear at this point is why the str is being deallocated since the
externals indicate it was not allocated because of insufficient CF
space.
 There are some CFRM trace entries that look relevant, and also
some system trace entries where it appears that IXCL2ALF is doing
PC B15. The lmod map previously requested should help clarify these.
Action Plan:
 Continue on Monday.
Action Taken:
 From discussion with development, this may involve MINSIZE. The
str may actually get allocated at the size of whatever is available in
the CF, but if it does not meet the MINSIZE requirement, it is then
deallocated.
Action Plan:
 Check STBL in dump for MINSIZE value and review L2ALF code.
Hello MVS.
 Any luck with the lmod map? I also want to know what if anything
is specified in the CFRM policy for the MINSIZE keyword on defintion
of IGWLOCK00.
Thanks

Customer:
Sorry for the delay. AMBLIST has been XMITTED to TORIBM.CS32587.
The IXCI2PVT was last updated as follows.

472 VSAM Demystified

Entry Type: MOD Zone Name: MVSSAQ
Entry Name: IXCI2PVT Zone Type: TARGET

 FMID: HBB7703 LASTUPD: HBB7703
 RMID: JNLSHRK DISTLIB: AOSXCF

 -------- -------- -------- -------- -------- -------- --------
MOD IXCI2PVT
SECTS IXCI2PVT
The JNLSHRK is a usermod provided by Dave Sherman to allow us to SHRINK
our CFRM dataset dynamically. This did not change since dump...

Yes the structure was defined as follows but with 2 or 3 extra zeros
for the various size fields. ie SIZE(5000000)

STRUCTURE NAME(IGWLOCK00) SIZE(5000)
 INITSIZE(2000)
 MINSIZE(1000)
 FULLTHRESHOLD(80)
 ALLOWAUTOALT(YES)
 REBUILDPERCENT(1)
 PREFLIST(CF5L2, CF6L2)

Hope this helps.
IBM MVS:
Received the AMBLIST from Deo into dataset 'isc.pmr07201.b057.amblist'.
MVS C/T it is on it's way to you......thanks again for the help.

IBM MVS:
 What the customer says about the policy does not coincide with what
I see in the dump which shows that SIZE, MINSIZE, and INITSIZE were
all 500000.
 Based on what is in the dump, the flow appears to be that there is
not enough space in the CF to allocate 500000 so L2ALF allocates a
structure at whatever size is avaialble. But since the allocated size
is less than MINSIZE, the structure gets dealloacted in L2RHT when
L2ASR does an IXCXRHT to clean the checkpoint. L2RHT also issues the
MSGIXC579I and does an IXCXLSIG(NEWRESOURCEAVAIL) which ultimately
results in L2MSG doing the ENF35.
 I'm reviewing this scenario with development. I'll keep a secondary
on our queue and provide a further update when I hear back.
Regards

Customer:
Hi sorry to mislead you. What I meant was the various sizes were
greater by 2 or 3 zeros..

MVS C/T:
Hi IBM MVS
 Appendix D. Information APARs 473

 I saw the comment (which is also what I understood from a prior
update), but it still does not make sense since SIZE, INITSIZE, and
MINSIZE are all the same in the dump. At this point I don't think it
is relevant to the problem that occurred, so let's just see what
response I get from development.
Regards,
IBM MVS:
Hi MVS C/T.....did you hear back from development?

MVS C/T:
Hi IBM MVS.
 Yes, they say this is user error and the code is working as it should.
If the ENF was not issued, then a hang could occur because the
connector has no initiative to ever try to get connected.
Regards

IBM MVS:
Talked with IBM DFP In this case the 'user' of the XCF
services is SMS which continually retries the IXLCONN when it receives
the ENF35. The IXLCONN could never have been satisfied because
the MINSIZE was too large. They will investigate if the SMS code
could detect the situation.

IBM DFP:

Hello MVS C/T:
We have been able to determine why this appears to be looping. What is
occurring is is VSAM issues the CONNECT to connect to the structure.
XCF attempts to allocate the structure but there is not enough room
even to allocate the MINSIZE that was specified. So XCF then does a
deallocate to unallocate the space that was successfully allocated for
this request.
Since the allocated size is less than MINSIZE, the structure gets
deallocated in IXCL2RHT when IXCL2ASR does an IXCXRHT to clean the
checkpoint. L2RHT also issues the msgixc579i and then does an
IXCXLSIG(NEWRESOURCEAVAIL) which ultimately results in IXCL2MSG doing
the ENF35. XCF has to do this in order to tell all listeners that
there is now space available in the CF.
The problem is SMSVSAM just keeps reissuing the CONNECT so it appears
that we are looping when in fact we really are not. What SMSVSAM
should do is attempt the CONNECT again (maybe a couple of times) and
then give up. Otherwise we would be doing this forever, since in this
specific situation the ral problem was the size that was specified in
the structure was incorrect (and way too big).
Do you think it would be reasonable that we should only retry some
finite number of times and then give up?
Thanks

474 VSAM Demystified

Hello MVS DFP:
 I discussed this with Terri again. We feel that it is best to leave
the code unchanged. Since RLSINIT(YES) was specified in PARMLIB,
we assume that the user intended SMSVSAM to start up
at IPL and had planned accordingly.
 Regards,

MVS DFP:
I discussed the resolution of this problem with Customer and he agreed
to leave the code as is. He agreed to close the ETR.

RTA000141603
Item RTA000141603
Source..........: PDDB0 PDDB0
Last updated....: 09/26/2000
Abstract........: Rebuild of IGWLOCK00 stalled after loss of coupling facility.

USERS: VSAM

PROBLEM SUMMARY:
Rebuild of IGWLOCK00 stalled after loss of coupling facility.
SMSVSAM unable to re-INIT on all systems.

SOLUTION:
Issue V SMS,SMSVSAM,FORCEDELETELOCKSTRUCTURE comand.

PROBLEM DETAILS:
 TYPE: WAD
 COMPID: 5695DF122
 RELEASE: 1D0

CUSTOMER:
Lost the CF on which the IGWLOCK00 structure resided.
While the structure was being rebuilt, also lost the SMSVSAM
server on N7B. This caused all the other SMSVSAM servers
to kill themselves (as expected). However, once they
restarted, the rebuild of IGWLOCK00 was either stalled
or stopped. In any event, the structure did not rebuild
onto the surviving CF, and all the connection to the
structure were listed as FAILED-PERSISTENT. Took a sysplex-
wide dump of SMSVSAM to help determine what happened to the
rebuild. (Just as a side note, once I recovered the CF,
the structure was successfully recovered).

 Appendix D. Information APARs 475

The same information could have been gotten with the D SMS,SMSVSAM or
via the D XCF,STR,STRNAME=IGWLOCK00 commands.

The systems will only be able to start if the current copy of IGWLOCK00
recovers from its connectivity problem or if the current structure copy
of IGWLOCK00 is destroyed. This could be done with the command:
V SMS,SMSVSAM,FORCEDELETELOCKSTRUCTURE
or by using the appropriate XCF commands.

This is working as designed. If connectivity is reestablished everyone
should take off. If the lock structure is deleted, then all currently
open VSAM data sets will go into LOST LOCKS state.

CUSTOMER:
Ok. I'll rerun the scenario with the extra step of deleting the lock
structure and I'll let you know what happens.

CUSTOMER:
Re-executed the scenario with the additional step (of deleting
the lock structure). As seemed to work well.

Additional search words:
LVL1PDDB (DMD)
50566,180 VSAM
VRLSPDDB97
476 VSAM Demystified

Glossary

Access method control block (ACB). A control
block that links an application to a VSAM data set

Active control data set (ACDS). A VSAM linear
data set that controls the storage management
policy for an installation. It is shared by each
system that is using the same SMS configuration
to manage storage.

Active lock. A lock obtained by an executing
subsystem. Requests for locks incompatible with
a held active lock are queued. See also retained
lock.

Alternate index. A key-sequenced data set
containing index entries organized by the
alternate keys of its associated base data
records. It provides an alternative way of locating
records in the data set on which the alternate
index is based.

Application owning region (AOR). A CICS
region that does not own terminals or files but
which purely runs CICS transactions, relying
upon terminal-owning and file-owning regions for
terminal and file access.

Automatic class selection (ACS). A facility that
allows a DFSMS system to decide which
constructs (data class, storage class,
management class or storage group) should be
associated with a data set based on definition
attributes.

Automatic restart manager (ARM). An OS/390
component that provides recovery and restart
capabilities.

Back-out. Undo all changes made to a
protected resource since the previous sync point.

Basic sequential access method (BSAM). An
access method for sequentially organized
non-VSAM data that relies on an application
program to block and unblock data records.

CEMT. A CICS-supplied transaction used to
invoke all the master terminal functions. These
© Copyright IBM Corp. 2001, 2003. All rights reserved
functions include inquiring and changing the
value of parameters used by CICS, altering the
status of system resources, terminating tasks and
shutting down CICS.

Cluster. A named VSAM structure consisting of a
group of one or more related components.

Consistent read (CR). A read operation where a
share lock is obtained and released as part of the
read process. This ensures that the reader sees
the latest committed copy of the record as at the
time of the read.

Consistent read explicit (CRE). A share lock is
obtained as part of the read process and held
until explicitly released. This ensures that a
subsequent read while the lock is still held will
always return the same version of the data.

Control area (CA). A fixed-size area in which
VSAM stores control intervals. It is the unit of
allocation for VSAM data.

Control interval (CI). A fixed-length area in
which VSAM stores records. It is the unit of
transfer between VSAM and disk storage.

Coupling facility (CF). The hardware that
provides services to support data shared
between OS/390 systems.

Coupling facility control code (CFCC). The
software running within a Coupling Facility that
provides Coupling Facility services.

Cross-system coupling facility (XCF). An MVS
component that provides services for the
exchange of messages between members of a
sysplex.

DFHLSCU. A CICS-supplied utility to calculate
space needed and average buffer size for log
streams.

DFR. An ACB parameter affecting buffer writing
when a data set is opened for LSR or GSR. It
defers the writing of a buffer until explicitly
. 477

requested to do so or until a buffer is needed for a
read request.

DFSMS. OS/390 component replacing
DFSMS/MVS.

DFSMS/MVS. A System/390 licensed program
that provides storage data and device
management functions. It comprises DFSMSdfp,
DFSMSdss, DFSMShsm and DFSMSrmm.

Entry-sequenced data set (ESDS). A data set
whose records are loaded without regard to their
contents and whose relative byte addresses
cannot change. New records are added at the
end of the data set.

Exclusive lock. A lock used to permit a resource
to be updated. An exclusive lock can only be
obtained if no other user holds a lock on the
resource. See also share lock.

External CICS interface (EXCI). A method of
invoking CICS services from outside CICS, for
example, by batch jobs.

File owning region (FOR). A CICS region that is
configured so that its only function is to own and
access CICS files on behalf of other CICS
regions.

Forward recovery. The process of applying the
records contained in a redo log to redo the
changes made to a data set in the event that a
data set is lost or damaged and must be
recovered from a backup copy.

GET NUP. A macro that reads a record from a
VSAM data set and, through specifications in the
RPL parameters, informs VSAM that the record
will not be updated or deleted.

GET UPD. A macro that reads a record from a
VSAM data set and, through specifications in the
RPL parameters, informs VSAM that the record
will be updated or deleted so that VSAM can
obtain the appropriate locks.

GETIX. A VSAM macro that allows you to read an
index control interval directly. It is normally used
only for index maintenance and repair.

Global resource serialization (GRS). A
component of OS/390 used for serializing the use
of system resources.

Global shared resources (GSR). A form of
VSAM processing that uses a buffer pool that is
shared dynamically between users in several
address spaces. The buffer pool is used to satisfy
I/O requests without a physical I/O.

Harden. Write to a non-volatile medium such as
disk or a log stream.

Integrated catalog facility (ICF). A cataloging
scheme that comprises basic catalog structure
(BCS) catalogs and multiple VSAM volume data
sets (VVDSs).

Integrated cluster bus (ICB). A form of link
between a processor and a Coupling Facility.

Internal coupling channel (IC). A link between
OS/390 and a Coupling Facility running in the
same physical processor complex.

IDCAMS. A utility program that provides
services in support of VSAM data sets.

Instance. An instance of DFSMStvs is the single
version ofDFSMStvs running in one z/OS image
and defined by the IGDSMSxx PARMLIB member
for that z/OS image.

Inter-system coupling (ISC). A old type of link
between a processor and a Coupling Facility,
superseded by an ICB link for distances below
seven meters with suitable processors.

Java Database Connection (JDBC). A set of
interfaces and protocols originally designed for
Java applications to be able to access relational
databases.

Key-sequenced data set (KSDS). A VSAM data
set whose records are loaded by ascending key
sequence and controlled by an index.Records are
retrieved and stored by keyed access or
addressed access and new records are inserted
in key sequence because of free space allocated
within the data set. Relative byte addresses of
records can change because of control interval or
control area splits.

Logical partition. A subset of the processor
hardware that is defined to support an operating
system.

Local shared resources (LSR). A form of VSAM
processing that uses a buffer pool that is shared
478 VSAM Demystified

dynamically between all users in one address
space. The buffer pool is used to satisfy I/O
requests without a physical I/O.

MIPS. Million Instructions per second.

NDF. Not deferred. See DFR.

No read integrity (NRI). A form of read operation
performed without locking so that the record
returned may contain uncommitted data.

Note string position (NSP). For direct access to
VSAM data sets, this RPL parameter requests
that VSAM remembers the position in the data set
for subsequent sequential access.

Non-shared resources (NSR). A form of VSAM
processing that provides static buffering on a per
data set basis.

OS/390. OS/390 is an operating system for
System/390 processors consisting of more than
50 base elements and integrated optional
features including MVS and DFSMS.

Parallel sysplex. A sysplex with at least one
coupling facility.

POINT. A macro that allows you to position to a
specified record within a VSAM data set in
preparation for a subsequent read or write.

Processor resource/system manager
(PR/SM™). The feature that allows a processor
to use several OS/390 images simultaneously by
providing logical partitions.

PUTIX. A macro that allows you to write a VSAM
index control interval directly. It is normally used
only for index maintenance and repair.

Queued sequential access method (QSAM).
An access method for sequentially organized
non-VSAM data that automatically blocks and
unblocks data records on behalf of an application
program.

Record level sharing. A VSAM extension that
provides direct access to a VSAM data set from
multiple systems, providing cross system locking
and buffer invalidation.

Resource recovery services (RRS). An MVS
component that provides sync point management
facilities to coordinate resource recovery for

programs that issue commit and back-out
requests to participating resource managers.

Redo. See forward recovery.

Relative record data set (RRDS). A type of
VSAM data set containing fixed length records
which are accessed by relative record number.

Request parameter list (RPL). A macro that is
used by programs to specify parameters for I/O
requests to VSAM data sets identified by an ACB.

Resource access control facility (RACF). An
IBM licensed program which is a base element of
OS/390 and provides access control by
identifying and verifying users, authorizing
access to protected resources, logging detected
unauthorized attempts to enter the system, and
logging detected accesses to protected
resources.

Retained lock. The status of a lock when the
subsystem executing a transaction fails. A
request incompatible with a retained lock is
rejected, rather than queued as would be the
case for an active (not retained) lock. Retained
status should be cleared when recovery is
complete.

Share lock. A lock used to serialize read access
with update access to the same resource. Many
users can hold a share lock, denoting that they
are all reading the resource. If there is an
exclusive lock held for a resource, a request for a
share lock is queued. If there is an share lock
held for a resource, another request for a share
lock is granted. See also exclusive lock.

Sharing control data set (SHCDS). The
repository for data required to ensure the integrity
of a data sharing environment in the event of the
loss of a coupling facility cache or lock structure.

Shunt. The process of putting aside a unit of
recovery that can neither committed not backed
out due to an error (such as an I/O error on one of
the data sets involved).

Shunt log. A secondary undo log in which a
record of the before image of records in data sets
are written before changing those records.
Records are moved to the secondary undo log
from the primary undo log when DFSMStvs is
 Glossary 479

unable to complete back-out processing for them,
usually because a resource is unavailable.

Sphere. A logical group of related VSAM
components containing both data and index.

SOD. Statement of Direction.

Storage Management Subsystem (SMS). An
operating environment that helps to automate
and centralize the management of storage. SMS
provides a storage administrator with control over
data class, storage class, management class,
storage group and ACS routine definitions.

Sysplex. A collection of MVS or OS/390 systems
with a single common time reference that
cooperate to process work and communicate
using XCF.

Terminal owning region (TOR). A CICS region
that is configured to act only as the interface
between terminals (or distributed systems
appearing as CICS terminals) and an application
owning region

Unit of recovery. Work done by or on behalf of a
context between one point of consistency and
another.

Unit of recovery ID (URID). The unique
identification of a unit of recovery.

UPAD. VSAM exit for user processing during a
VSAM request.

Variable relative record data set (VRRDS). A
type of VSAM data set containing fixed or
variable length records which are accessed by
relative record number.

Virtual storage access method (VSAM). If you
need to check this, stop reading the book.

XCF. See Cross-system coupling facility.
480 VSAM Demystified

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 482. Note that some of the documents referenced here may be available
in softcopy only.

� CICS and VSAM Record Lavel Sharing: Implementation Guide, SG24-4766

� CICS and VSAM Record Lavel Sharing: Planning Guide, SG24-4765

� CICS and VSAM Record Lavel Sharing: Recovery Considerations,
SG24-4768

� DFSMS/MVS V1R4 Technical Guide, SG24-4892

� Transactional VSAM Application Migration Guide, SG24-6145

� OS/390 Parallel Sysplex Configuration: Overview, Volume 1, SG24-5637

� OS/390 Parallel Sysplex Configuration Cook Book, Volume 2, SG24-5638

� OS/390 Parallel Sysplex Configuration: Connectivity, Volume 3, SG24-5639

Other publications
These publications are also relevant as further information sources:

� z/OS DFSMS Managing Catalogs, SC26-7409

� z/OS DFSMS Using Data Sets, SC26-7410

� z/OS DFSMSdfp Storage Administration Reference, SC26-7402

� z/OS DFSMS Access Method Services for Catalogs, SC26-7394

� z/OS MVS Setting Up a Sysplex, SA22-7625

� z/OS MVS Programming: Resource Recovery, SA22-7616

� z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589

� z/OS MVS Programming: MVS Assembler Services Guide, SA22-7605

� z/OS MVS Programming: Authorized Assembler Services, SA22-7610
© Copyright IBM Corp. 2001, 2003. All rights reserved. 481

� z/OS DFSMStvs Planning and Operating Guide, SC26-7348

� CICS VSAM Recovery Implementation Guide, SH26-4126

� CICS Recovery and Restart Guide, SC33-1698

� DFSMStvs Administration Guide, GC26-7483

Online resources
These Web sites and URLs are also relevant as further information sources

� IBM Storage Web site

http://www.storage.ibm.com/software/sms/details.html#RLS

� IBM Coupling Facility sizer

http://www-1.ibm.com/servers/eserver/zseries/cfsizer/vsamrls.html

� z/OS RMF

http://www.ibm.com/servers/eserver/zseries/rmf

� Catalog and VSAM Knowledge Base

http://knowledge.storage.ibm.com

� DFSMS Technical Support

http://ssddom02.storage.ibm.com/techsup/webnav.nsf/support/dfsms

� TRSMAIN Utility

http://techsupport.services.ibm.com/390/trsmain.html

� Flashes

http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/Flashes

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks
482 VSAM Demystified

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www-1.ibm.com/servers/eserver/zseries/cfsizer/vsamrls.html
http://www.storage.ibm.com/software/sms/details.html#RLS
http://techsupport.services.ibm.com/390/trsmain.html
http://ssddom02.storage.ibm.com/techsup/webnav.nsf/support/dfsms
http://knowledge.storage.ibm.com
http://www.ibm.com/servers/eserver/zseries/rmf
http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/Flashes

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 483

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

484 VSAM Demystified

Index

Numerics
64 bit 240

A
ACB 235
ACCBIAS 233
access method control block 239
access method services 33
access to SHCDS 263
access types 4
active lock 477
ADR 230
AIX 14
AKP 357
algorithm 208
ALLOCATE 237, 358
allocate 254
allocate SHCDS 254
ALLOCATE TSO command 32
ALTER 237, 358
alternate index 14–15
AMS 10, 14
Analyze 210
AOR

See Application Owning Region 331
API examples 364
application 335
Application Owning Region 331
Application programming interfaces 39
asynchronous 284
atomic updates 326
ATRB 230
AVGREC 233

B
backward recovery

definition 326
base cluster 68
batch local shared resources 92
BCS 172, 237
BDC000022923 267
BLDINDEX 14
© Copyright IBM Corp. 2001, 2003. All rights reserved
BLDVRP macro 77
BMFTIME 275, 357
broken index 169
BSAM 26
buffer pools 119
buffering 119
buffers 65
BUFND 67, 233
BUFNI 67, 233
BUFSP 67, 233
BWO 175, 233, 237, 358–359

C
CA 10
cache 126
cache candidates 412
cache modes 402
cache structures

defining 256
mulitple 257

cache usage attributes 409
CACHETIME 357
calculation 208
CATALOG 233
catalog LOCATE 424
catalog management 4
catalog performance 162, 421

catalog contention 424
catalog LOCATE 424
ENQ times 423
GRS configuration 426
LPAR considerations 425

catalog recovery 155
catalog search interface 141, 231
catalogs 102
CBUF 225, 227
CCHHR 19
CCW 9, 142
CEMT 325
CF cache 300
CF cache structures

defining to SMS 260
CF hardware 283
. 485

CF lock structures 258
defining 258

CF Structure
System managed duplexing rebuild 279
User-managed rebuild 278

CF_TIME 263, 357
CFCACHE 271, 276
CFCC 279
CFLS 270
CFRM 280
CF-TIME 276
CFVOL 272, 276
checkpoint restart 29
CI 8
CI/CA splits 204
CICS 40
CICS application 33
CICS environment 244
CICSVR 330
CISIZE 10
CISZ 233
CKD 7, 28
Close 235, 238
CLOSE macro 239
cluster 13–14
COBOL 241

SMB 241
commands

AMS DEFINE PATH 15
BLDINDEX 14, 20
D GRS 431
D SMS,CFLS 251
DIAGNOSE 150, 152, 166
DISPLAY GRS,ANALYZE 432
DISPLAY GRS,CONTENTION 431
EXAMINE 152, 156, 165
EXPORT 173
F CATALOG,REPORT PERFORMANCE 432
IDCAMS DEFINE 20
IDCAMS EXAMINE 154
IMPORT 174
LISTCAT 187, 196
PRINT 141
REPRO 144
VERIFY 146, 148, 154, 166

Commit
definition 327

Commit coordinator 329
COMPACTION 233

component 10
compression dictionaries 95
compression ratio, sample code 384
concurrent access 244
considerations 257
consistent read 329, 477
Consistent read explicit

See Repeatable read 329
consistent read explicit 477
context 336
control area 10

splits 15
control block 223
control block structures 223
control Interval 8
control interval

format 9
control interval definition field 9
controlled buffer pools 119
count key data 7
CRE 358
cross invalidation 287
Cross-region 224
Cross-region options 224
Cross-system options 225
CSI 231

D
DADSM 240
DASD 16
data buffers 71
Data Class construct 237
data component 11
data compression 28, 94
data decompression 99
data in virtual 24
data set

recoverable 330
data set organizations 16
data set recovery 140
data sharing 226, 282
data striping 28, 30, 103

implementing 106
JCL 107
multi-layering 105
recommendations 114

DATACLAS 229, 233, 345
DATACLASS CISIZE 358
486 VSAM Demystified

DB2 39
DCME 239, 409
DDNAME 233
DEADLOCK_DETECTION 263, 276, 295, 357
Deadlocks 160
defer write requests 80
DEFINE 10, 22
define 258
DFR 477
DFSMS 2, 230
DFSMS/MVS 1.3 228
DFSMS/MVS 1.4 228
DFSMS/MVS 1.5 228
DFSMS/MVS V1R5 2
DFSMSdss 141
DFSMShsm 40
DFSMSrmm 40
DFSMStvs 323

catalog contention 428
catalog performance 421
catalog sharing 422
defining list structures 336
defining the log structures 336
definitions and terms 325
documentation for level 2 441
GRS config 422
GRS environment 426
IDCAMS changes 358
implementation experiences 336
information APARs 441
JCL changes 355
locking 332
logging 332
LPAR considerations 422
macro changes 361
Messages and codes 361
miscellaneous performance items 395
New and changed system level commands 348
overview 331
problem determination 345
Quiescing a Data Set 347
recoverable data sets 328
recovery coordination 335
reducing the CICS batch window 325
Sample RACF commands 345
SMS constructs 345
SYS1.PARMLIB changes 355
the RLS connection 332
using cache 409

DIAGNOSE 166
DIAGNOSE command 141
DIR 230
direct access 18–19
DIRECT WEIGHT 286
dirty read

See No Read Integrity 329
disconnect time 129
DISP 227
DITTO 35
DIV 24
DIV ACCESS 24
DIV IDENTIFY 24
DIV MAP 24
DIV RESET 24
DIV SAVE 24
DO 87
dump 346
DYNALLOC 32
Dynamic allocation 32
dynamic cache management enhanced 409
DYNAMIC VOLUME COUNT 233
dynamic workload 299

E
EA 228, 230
end-of-volume macro 240
enhanced catalog sharing 422
Enqueue 157
Enqueue Manager 214
entry sequenced data set 19
EOV 238, 240
ERASE 233
ESDS 10, 27, 237

types of access
sequential access 19

ESS 134
EXAMINE 140, 165
EXCEPTIONEXIT 233
EXCI

See also External CICS Interface
Exclusive lock 332, 478
EXLST 233
EXPDT 233
EXTENDED ADDRESSABILITY 233
extended addressability 28–29, 228, 278

macros 230
EXTENDED FORMAT 233
 Index 487

extended format 28, 134
extended format data set 230
External CICS Interface 325

F
Failing Module 346
FALLBACK 267
False contention 251
False/False contention 251
File Owning Region 331
file owning region 248
FOR 247

See File Owning Region 331
Forward recovery 478

definition 326
free space 208
FREESPACE 56, 233
FRLOG 234
FTP 211
functions by release level 2

G
General share options 226
Generalized Trace Facility 137
generic compression 97
generic key 18
GET 5, 241
global shared resources 80
GRS 226
GRS configuration 422, 426
GRS Ring configuration 422
GRS Star configuration 422
GSR 80, 219
GTF 137
GTF procedure example 387

H
Hangs 347
HARBA 6, 193, 240
haring Control 253
HFS 39

files, accessing 39
hierarchical file system 39
High allocated RBA 6
high used RBA 6, 53
hiperbatch 121
hiperspace 85

history 2
HSMplex 40
HURBA 6, 192, 240

I
I/O 119
I/O Service Time 129
ICF 4
ICF catalog 330
IDCAMS 22, 27, 32–33, 163

using to define a VSAM data set 32
IDCAMS DEFINE 32, 237
IDCAMS LISTCAT 148
IEC161I 10
IFAPRDxx 355
IGDMSMSxx

DEADLOCK_DETECTION 262
IGDSMSxx 262, 281

RLS_MAX_POOL_SIZE 263
IGGCSILK 232
IGGCSIRX 232
IGGCSIVG 232
IGGCSIVS 141, 232
IGW8 346
IGW9 346
IGWLOCK00 268, 293
IGWVRNSA 346
II08859 APAR 178
index 11
index component 11
index marker 7
index options 58
index set 12
In-doubt unit of recovery 329
INDXCISZ 211
inflight 348
In-flight and in-doubt 329
In-flight unit of recovery 329
information APARs 441
initial load 59, 144
initial load mode 59, 73
Instance 478

Transactional VSAM 333
integrated catalog facility 4
integrity 216
invalid rules-of-thumb 48
IOSQ 125
IXCCONN 225
488 VSAM Demystified

IXCMSGI 225
IXCMSGO 225
IXLVECTR 289

J
JCL 242
JCL DD 32
JCL DISP 218
JRIO 40

K
key field 6
key range 29, 58
KEYEDEXG 108
KEYEDEXT 111
KEYLEN 234
KEYOFF 234
knowledge database 178
KSDS 10, 27, 229, 237, 278

L
lab environment 395

cache concepts 399
LDS 10, 23, 28, 237
LIKE 234
linear data set 23
LISTCAT command 141
local buffer pool 285
local shared resources 77
lock contentions 259
lock structure size 258
lock structures 289
Locks 266

Exclusive 332
Share 332

LOG 234, 359
Log 355
Log of logs 334
LOG(ALL) attribute 330
LOG(NONE) 330
LOG(UNDO) 330
LOG_OF_LOGS 357
logical record 5

ways to identify 6
LOGREC 142
LOGSTREAMID 234, 359
logstreamid 352

Lost Locks 252
LRD 230
LRECL 234
LRUCYCLES 275
LRUTIME 275
LSR 77, 79, 241
LSR buffering 79

M
MACRF 66, 234
macros 230
Management Class 238
MANAGEMENTCLASS 234
Managing 203
Mapping 24
MAXLOCKS 358
Media Manager 238, 240
messages

ARC0909E 207
IDC11709I 145
IDC11712I 145
IDC11727I 146
IDC3009I 181
IDC3308I 144
IDC33351I 61
IDC3350I 146
IDC3351I 143–145, 147, 149–150, 153, 155,
231
IEC070I 141
IEC161I 143
IOS000 141
IOS000I 147

MGMTCLAS 234, 345
MIPS 297
MONDS 273
MVS Commands

RLS 268

N
no read integrity 329
NOERASE 233
Non-recoverable data set 330
Non-recoverable sphere 252
non-RLS 214
non-shared resources 68, 70, 74
NORECATALOG 234
NOREUSE 234
NRI
 Index 489

See No Read Integrity 329
NSR 70, 74, 241
NUMBERED 22

O
OEM 241
online transaction program 78
OPEN 240
Open 235, 238
OPEN macro 239
OPTCD 230

P
Parallel Sysplex 214
parameters

ACB 66
buffer allocation 65
BUFFERSPACE 67
BUFND 67
BUFNI 67
BUFSP 67
FREESPACE 56
MACRF 66
performance 49
SHAREOPTIONS 58
STRNO 75

PARMLIB 355
partial release 53
partial space release 28
path 15
PEERRECOVERY 355
performance 43, 282, 297

BSLR 92
buffer allocation 68
buffer location 81
buffering options 63
buffering techniques 68
buffers 71
CA size 113
CI size 54
compression 100–101
connect time 130
constraint Relief 54
control area 52
control interval 54
data buffers 73
data compression 94
data striping 31, 103, 114

global shared resources 80
guaranteed space 50
HARBA 53
I/O 46
I/O response time 64
index buffers 75
index component buffers 77
index I/O buffer 72
IOS queue time 125
KSDS 75
lab environment 398
management 46–47
optimizing CA size 52
parameters 49
REGION 63
resource pool 64
response time 132
RMF 115
rule-of-thumb 48
service level agreement

SLA 44
SMB 83
transaction 44

physical record 7
Planning for RLS 253
PRINT command 141
problem determination 139
processing

direct 19
direct access 18
KSDS 17
relative record 22
sequential 19
sequential access 17

processing options 233

Q
QSAM 26
QTIMEOUT 357
QUIESCE 275
Quiesce 252
Quiesce a volume or a cache 252
Quiesce transactions 252

R
RACF 121, 263

SHCDS considerations 263
RAID 52, 238
490 VSAM Demystified

random access 4
RBA 6, 236, 239
RDF 9, 21
Read Integrity 251
RECATALOG 234
record definition field 9
record definition fields 9
Record Level Sharing 214
record management 5, 241
RECORDSIZE 234
RECORG 234
recoverable 330
Recoverable data set 330
RECOVERY 60, 125
recovery 139, 327

scenarios 169
task abend 171
VVDS records 172

recovery termination manager 64
Redbooks Web site 482

Contact us xxiii
Redo log 326
Relative byte address 6
relative byte address

HARBA 6
HURBA 6

relative record data set 21
relative record number 6–7
Reorganization 204
Repeatable read 329
Resource Manager 335
Resource Measurement Facility 282
resource recovery management services 199
restrictions 249
Retained lock 479
RETPD 234
REUSE 234
REXX 231–232
RLIST 263
RLS 2, 162, 214, 235, 244, 278

batch performance 300
cache size 257
CF access time 295
CF cache structures 256
CF lock structures 258
CF structure duplexing 278
CICSPlex performance 299
Deadlocks 295
enhancements 278

I/O workload 293
IGDSMSxx parmlib member 262
implementing 253
lock structure duplexing 293
MVS commands 268
performance 282
recoverable spheres 265
Recoverable VSAM spheres 294
RMF 306
SHCDS 253
SMF records 321

RLS rules 267
RLS_DynamicCfCacheReassign 281
RLS_MAX_POOL_SIZE 356
RLS_MAXCFFEATURELEVEL 275, 281
RLSINIT 356
RLSREAD 235
RLSTMOUT 357–358
RMF 115, 136, 428
RMF reporting options 429
RMODE31 81, 235
RNL 226
RNN 21
ROT (rule of thumb) 47
RRDS 10, 22, 27, 237
RRN 7, 236
RTA000141603 267
rule of thumb (ROT) 47

S
sample code 363

extract data from SMF 64 record 367
JRIO APIs 364
VSAM shared information 366

Sample JCL 254
Sample program to extract information 367
Secondary space allocations 124
See External CICS Interface
SEQ 230
sequence set 11
sequential access 4
SEQUENTIAL WEIGHT 286
Serialization 292
serialization at record level 292
SET SMS 354
SETSMS 275, 354
Share lock 332, 479
SHAREOPTION 235
 Index 491

SHAREOPTIONS 58, 72, 218, 224–225, 325, 358
sharing

global resource sharing 226
options 226

sharing mechanisms 216
SHCDS 266, 273, 277, 283

considerations 255
defining 253
RACF 263
space allocation 254

SHCDS RACF considerations 263
SHR options 58
Shunt 479
Shunt log 334
SHUNTED 350
sizer tool 210
skip sequential access 4
SMB 2, 82, 237
SMBDFR 85
SMBHWT 85
SMBVSP 85
SMF 102, 194
SMF_TIME 356
SMFIOCNT 239
SMFLSR 380
SMFRLS, sample program 387
SMS constructs 237, 345
SMS definitions 260
SMS managed 73
SMSVSAM 250, 263, 266, 273, 277, 285

bufferring and caching 285
SPACE 235
SPACE CONSTRAINT RELIEF 235
space constraint relief 176
spanned records 10
Special Considerations 241
SPEED 60
SPHERE 355
sphere 14, 264
splits 15, 124

FREESPACE parameter 56
STARTIO 239
Statement of Direction (SOD) 238
Storage Class 238
STORCLAS 345
Subsystem 250
SVC 121 238
Synchronization point 327
Synchronous 284

Syncpoint manager 335
SYS1.PARMLIB 281
SYS1.SAMPLIB 232
SYSDSN 218, 227
SYSNAME 357
Sysplex 217
System Logger 332
system managed buffering 82, 237
system-managed buffering 28
system-managed duplexing rebuild 279
SYSVSAM 226

T
tailored compression 97
TDS 137
TESTCB 230
Tivoli Decision Support 137
TRANVSAM 348, 355
TRSMAIN 211
True/False contention 251
TV_START_TYPE 357
TVSNAME 357
Two-phase commit 328

U
UNDO attribute 330
Undo log 326
Unit of recovery 327, 480
Unit of work 327

V
variable relative record 22
variable relative record data set 22
VARY SHCDS 263–264
VERIFY 166
VERIFY command 140
virtual storage 143
VRRDS 10, 27, 208, 237
VSAM 2

access types 4
Accessing VSAM cluster 33
Allocating a VSAM cluster 31
alternate indexes 14
buffering 133
catalog management 4
cluster 13–14
Comparing VSAM data set organizations 24
492 VSAM Demystified

data set organizations 16
data set recovery 140
Data striping 30
defining clusters 32
entry sequenced data set 19
exploiters 38–39
extended addressability 29, 228
extended format 28
Extended format data set 28
functions by release level 2
history 2
integrity 58
key field 6
keyed sequenced data set 16
linear data set 23
logical record 5
managing data sets 203
non-shared resources 68, 74
organizations 26
performance 43
performance management 115
physical record 7
record management 5
recovery 145–146, 148, 150, 152, 154
relative record number 21
sharing 153
SMB 82
structural damage 150
terminology and concepts 5
VRRDS 22

VSAM buffering 16
VSAM Shared Information 366
VSAM/ISAM 242
VSI 225, 366
VTAM 331
VTOC 10, 102
VVDS entries 237

W
WLM 44
Workload Manager 44
Write and read integrity 215
Write checks 124

X
XADDR 230
XAVSPAC 230
XCF 331

XENDRBA 230
XHALCRBA 230
XRBA 230

Z
z/OS V1 R3 208, 210
z/OS V1 R4 or later 279
z/OS V1R4 DFSMS 238, 240
zFS

zSeries file system 39
 Index 493

494 VSAM Demystified

(1.0” spine)
0.875”<->

1.498”
460 <->

 788 pages

VSAM
 Dem

ystified

®

SG24-6105-01 ISBN 0738453234

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

VSAM Demystified

Learn the latest
VSAM functions and
manage VSAM data

Understand,
evaluate, and use
VSAM properly

Problem
determination and
recommendations

Virtual Storage Access Method (VSAM) is one of the
access methods used to process data. Many of us have
used VSAM and work with VSAM data sets daily, but
exactly how it works and why we use it instead of
another access method is a mystery.

This book helps to demystify VSAM and gives you the
information necessary to understand, evaluate, and use
VSAM properly. It clarifies VSAM functions for
application programmers who work with VSAM. The
practical, straightforward approach should dispel much
of the complexity associated with VSAM. Wherever
possible an example is used to reinforce a description
of a VSAM function.

This IBM Redbook is intended as a supplement to
existing product manuals. It is intended to be used as
an initial point of reference for VSAM functions.

This book also builds upon the subject of Record Level
Sharing and the new z/OS feature called DFSMStvs.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. VSAM basics
	1.1 A brief description of VSAM
	1.2 VSAM functions by release level
	1.3 What is VSAM?
	1.3.1 VSAM access types

	1.4 Major VSAM parts
	1.4.1 Catalog management
	1.4.2 Record management

	1.5 VSAM terminology and concepts
	1.5.1 Logical record
	1.5.2 Key field
	1.5.3 Ways to identify logical records
	1.5.4 Physical record
	1.5.5 Control interval
	1.5.6 Control area
	1.5.7 Spanned records
	1.5.8 Component
	1.5.9 Cluster
	1.5.10 Sphere
	1.5.11 Alternate indexes
	1.5.12 Splits
	1.5.13 VSAM buffering

	1.6 VSAM data set organizations
	1.6.1 Key-sequenced data set
	1.6.2 Entry sequenced data set (ESDS)
	1.6.3 Relative record data set
	1.6.4 Variable relative record data set
	1.6.5 Linear data set (LDS)

	1.7 Comparing VSAM data set organizations
	1.8 Choosing a VSAM data set type
	1.9 Extended format data set
	1.10 Extended addressability
	1.11 Data striping
	1.12 Processing a VSAM cluster
	1.12.1 Allocating a VSAM cluster
	1.12.2 Accessing VSAM cluster
	1.12.3 Unallocation

	1.13 VSAM exploiters
	1.13.1 DB2
	1.13.2 Hierarchical file system (HFS)
	1.13.3 zSeries File System (zFS)
	1.13.4 CICS
	1.13.5 DFSMShsm
	1.13.6 DFSMSrmm
	1.13.7 Java Record I/O (JRIO)

	Chapter 2. Performance
	2.1 Service level agreement
	2.2 Transaction performance
	2.3 Performance management
	2.3.1 I/O performance

	2.4 VSAM performance management
	2.5 VSAM rule-of-thumb mode
	2.5.1 Invalid rules-of-thumb

	2.6 Parameters affecting performance
	2.6.1 Allocation units
	2.6.2 Guaranteed Space
	2.6.3 Optimizing control area (CA) size
	2.6.4 Partial release
	2.6.5 Allocation constraint relief
	2.6.6 Control interval size
	2.6.7 FREESPACE definition for KSDS and ESDS
	2.6.8 Index options
	2.6.9 Key Range and Ordered
	2.6.10 Share options
	2.6.11 Initial load option
	2.6.12 Region size
	2.6.13 Buffering options
	2.6.14 Buffering techniques
	2.6.15 Data compression
	2.6.16 VSAM Data striping

	2.7 VSAM performance by scenarios
	2.7.1 Performance scenario using RMF reports
	2.7.2 Reducing the number of I/Os
	2.7.3 I/O wait time (IOSQ) for VSAM data sets
	2.7.4 I/O service time (connect) for VSAM data sets
	2.7.5 Decreasing VSAM CPU time

	2.8 VSAM and ESS controllers
	2.8.1 ESS model 800 enhancements
	2.8.2 Lab experiments

	2.9 Performance monitors
	2.9.1 Resource measurement facility
	2.9.2 Tivoli Decision Support (TDS)
	2.9.3 Generalized Trace Facility (GTF)

	Chapter 3. VSAM problem determination and recovery
	3.1 VSAM problem determination hints and tips
	3.1.1 How to check your VSAM data set
	3.1.2 z/OS system messages
	3.1.3 Catalog Search Interface IGGCSIVS program
	3.1.4 System LOGREC messages
	3.1.5 GTF CCW traces
	3.1.6 DITTO/ESA output
	3.1.7 What can you get from the SMF records?

	3.2 Some common VSAM problems
	3.2.1 Lack of virtual storage
	3.2.2 Initial loading problems
	3.2.3 Mismatch between catalog and data set
	3.2.4 Hardware errors
	3.2.5 Bad data or bad channel program
	3.2.6 Structural damage
	3.2.7 Improper sharing
	3.2.8 Mismatch between catalog and VTOC
	3.2.9 VSAM does not produce expected output
	3.2.10 VSAM RLS problems
	3.2.11 VSAM and DFSMStvs considerations
	3.2.12 OEM problems
	3.2.13 Enqueue issues
	3.2.14 Migration issues
	3.2.15 Performance considerations
	3.2.16 Deadlocks
	3.2.17 Beware of some VSAM restrictions

	3.3 What documentation to collect
	3.3.1 Catalog performance problems
	3.3.2 VSAM RLS problems
	3.3.3 IDCAMS problems
	3.3.4 Broken VSAM data set
	3.3.5 Broken catalog
	3.3.6 How to obtain VSAM record management trace?

	3.4 How to recover a damaged VSAM data set
	3.4.1 EXAMINE command
	3.4.2 DIAGNOSE command
	3.4.3 VERIFY command
	3.4.4 Broken Index scenario
	3.4.5 Abend task scenario
	3.4.6 Recovering damaged BCS entries
	3.4.7 Recovering damaged VVDS entries

	3.5 Prevention is better than cure
	3.5.1 Back up your VSAM data sets
	3.5.2 Keep your system at current maintenance levels
	3.5.3 Use Resource Recovery Management Services (RRMS)

	3.6 Where to look for more information
	3.6.1 IBM manuals and sources of relevant information
	3.6.2 Information APARs from IBMLINK on VSAM problems
	3.6.3 Information APARs on specific problems
	3.6.4 VSAM information on the Internet

	3.7 IDC3009I message
	3.8 IDCAMS LISTCAT output fields
	3.8.1 High used RBA value (HURBA) for KSDS
	3.8.2 High allocated RBA value (HARBA)
	3.8.3 FREESPC
	3.8.4 High key RBA/CI
	3.8.5 High-level index RBA value
	3.8.6 Sequence set first RBA value
	3.8.7 Number of index levels
	3.8.8 Time stamps

	3.9 SMF record types related to VSAM data sets
	3.9.1 SMF record type 60
	3.9.2 SMF record type 61
	3.9.3 SMF record type 62
	3.9.4 SMF record type 63
	3.9.5 SMF record type 64
	3.9.6 SMF record type 65
	3.9.7 SMF record type 66
	3.9.8 SMF record type 67
	3.9.9 SMF record type 68
	3.9.10 SMF record type 69
	3.9.11 SMF record type 42

	3.10 RRMS and VSAM

	Chapter 4. Managing your VSAM data sets
	4.1 Reorganization considerations
	4.1.1 CI/CA splits
	4.1.2 The loss of useful space in Data CA
	4.1.3 CI/CA splits causing free space increase

	4.2 New Index CI size calculation algorithm
	4.2.1 Analyze existing data sets

	4.3 Sharing VSAM data sets
	4.3.1 Write and read integrity
	4.3.2 VSAM sharing mechanisms
	4.3.3 Sharing data in a single VSAM control block structure
	4.3.4 Sharing data with many VSAM control block structures
	4.3.5 General share options: Considerations
	4.3.6 Protecting VSAM data set through DISP parameter

	4.4 Extended addressability (EA)
	4.5 Catalog Search Interface
	4.5.1 CSI setup

	4.6 Major sources of VSAM processing options
	4.6.1 ACB control block
	4.6.2 DD statement keywords
	4.6.3 Catalog BCS and VVDS entries
	4.6.4 SMS constructs

	4.7 Media Manager, Open, Close, EOV in VSAM
	4.7.1 OPEN macro
	4.7.2 CLOSE macro
	4.7.3 End-of-Volume (EOV)

	4.8 VSAM and 64 bits
	4.9 Special considerations for COBOL users and SMB
	4.9.1 COBOL users take note

	Chapter 5. VSAM Record Level Sharing
	5.1 Introducing VSAM RLS
	5.1.1 What is VSAM RLS?
	5.1.2 Why RLS?
	5.1.3 How does RLS work?
	5.1.4 RLS in a single system (monoplex)
	5.1.5 CICS and VSAM RLS
	5.1.6 RLS restrictions

	5.2 RLS terminology
	5.3 Planning for RLS
	5.3.1 Hardware requirements

	5.4 Implementing VSAM RLS
	5.4.1 Define Sharing Control Data Set (SHCDS)
	5.4.2 Define CF cache structures
	5.4.3 Define CF lock structures
	5.4.4 SMS definitions
	5.4.5 Modifying the PARMLIB IGDSMSxx Member
	5.4.6 Security definitions
	5.4.7 Using a VSAM sphere in RLS mode
	5.4.8 RLS Recoverable spheres

	5.5 RLS problem determination and recovery
	5.5.1 Problems with SHCDS
	5.5.2 Problems with SMSVSAM
	5.5.3 Problems with locks
	5.5.4 SHCDS FALLBACK procedure
	5.5.5 RLS rules
	5.5.6 MVS commands for RLS

	5.6 RLS enhancements
	5.6.1 RLS/KSDS extended addressability
	5.6.2 VSAM RLS CF structure duplexing and rebuild
	5.6.3 RLS CF caching enhancements

	5.7 RLS performance
	5.7.1 Factors affecting RLS data sharing performance
	5.7.2 CF access time
	5.7.3 RLS performance gains
	5.7.4 CICSPlex RLS performance comparison
	5.7.5 Batch RLS performance experiments and comparison
	5.7.6 RMF and VSAM RLS
	5.7.7 MVS commands about RLS performance
	5.7.8 SMF records covering VSAM RLS

	Chapter 6. DFSMStvs
	6.1 Introducing DFSMStvs
	6.2 Why DFSMStvs?
	6.2.1 How to extend CICS availability
	6.2.2 Reducing the batch window

	6.3 Some definitions
	6.3.1 Backward recovery
	6.3.2 Forward recovery
	6.3.3 Atomic updates
	6.3.4 Unit of work and unit of recovery
	6.3.5 Two-phase commit
	6.3.6 In-flight and in-doubt
	6.3.7 Repeatable read
	6.3.8 Recoverable data sets

	6.4 CICS support for recoverable VSAM
	6.5 DFSMStvs overview
	6.5.1 The RLS connection
	6.5.2 DFSMStvs locking
	6.5.3 DFSMStvs logging
	6.5.4 Recovery coordination

	6.6 Our experiences with implementation
	6.6.1 Define list structures in the CFRM policy
	6.6.2 Define the log structures and log streams in LOGR policy
	6.6.3 Define SMS constructs for DFSMStvs

	6.7 DFSMStvs problem determination tips
	6.7.1 How to take a dump of the problem?
	6.7.2 Classes of errors
	6.7.3 Determining the Failing Module
	6.7.4 Apparent batch job hangs
	6.7.5 Other hangs
	6.7.6 Quiescing a data set
	6.7.7 Close/delete/rename of data set with inflight UR
	6.7.8 New and changed system level commands for DFSMStvs
	6.7.9 SET SMS and SETSMS commands
	6.7.10 VARY SMS command
	6.7.11 SYS1.PARMLIB changes
	6.7.12 Changes to Job Control Language (JCL)
	6.7.13 Changes to IDCAMS
	6.7.14 Messages and codes
	6.7.15 Macros that have been changed to support DFSMStvs

	Appendix A. Sample code
	JRIO API examples
	Locate a record by key in keyed access record file
	Position to a record in a random access record file
	Read a record from a keyed access record file
	Read a record from a random access record file
	Update a record in a keyed access record file

	Accessing the VSAM Shared Information (VSI)
	Sample programs extract from SMF record type 64
	SMF64 sample code
	SMFLSR sample program

	REXX code to list compression ratio
	SMFRLS Sample program

	GTF procedure example

	Appendix B. Miscellaneous performance items
	Our test environment
	Hardware configuration
	Software configuration
	General lab description
	What do we measure?
	RLS experiments
	DASD cache concepts
	Cache Modes
	Using cache modes in a non-SMS data set
	Using cache in an SMS data set

	Share options analogy
	Symptoms (messages) from a broken data set
	IDCAMS EXAMINE messages

	Appendix C. Catalog performance
	Performance
	Enhanced Catalog Sharing
	GRS configuration
	Diagnosing prolonged catalog ENQ times
	LPAR considerations
	GRS environment
	Catalog contention

	Appendix D. Information APARs
	II12927 - Documentation for VSAM problems
	II13326 - Common problems with SHCDS
	BDC000010564
	BDC000007033
	II12603
	II12243
	BDC000022923
	RTA000141603

	Glossary
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

